These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 31889918)

  • 1. In vivo monitoring of total skin electron dose using optically stimulated luminescence dosimeters.
    Kairn T; Wilks R; Yu L; Lancaster C; Crowe SB
    Rep Pract Oncol Radiother; 2020; 25(1):35-40. PubMed ID: 31889918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Technical note: Sources of systemic error in total body irradiation and total skin electron therapy in vivo measurements using nanoDot optically stimulated luminescence dosimeters within high-efficiency clinics.
    Yoon SW; Lin H; Mihailidis D; Kennedy C; Li T
    Med Phys; 2022 May; 49(5):3489-3496. PubMed ID: 35213731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid Multisite Remote Surface Dosimetry for Total Skin Electron Therapy: Scintillator Target Imaging.
    Tendler I; Brůža P; Andreozzi J; Jermyn M; Williams B; Jarvis L; Pogue B; Gladstone D
    Int J Radiat Oncol Biol Phys; 2019 Mar; 103(3):767-774. PubMed ID: 30419306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of surface dose in an MR-Linac with optically stimulated luminescence dosimeters for IMRT beam geometries.
    Lim-Reinders S; Keller BM; Sahgal A; Chugh B; Kim A
    Med Phys; 2020 Jul; 47(7):3133-3142. PubMed ID: 32302010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo dosimetry with optically stimulated luminescent dosimeters, OSLDs, compared to diodes; the effects of buildup cap thickness and fabrication material.
    Jursinic PA; Yahnke CJ
    Med Phys; 2011 Oct; 38(10):5432-40. PubMed ID: 21992362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SU-E-T-169: Initial Investigation into the Use of Optically Stimulated Luminescent Dosimeters (OSLDs) for In-Vivo Dosimetry of TBI Patients.
    Paloor S; Aland T; Mathew J; Al-Hammadi N; Hammoud R
    Med Phys; 2012 Jun; 39(6Part12):3742. PubMed ID: 28517806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Technical Note: A novel dosimeter improves total skin electron therapy surface dosimetry workflow.
    Tendler II; Bruza P; Jermyn M; Soter J; Sharp G; Williams B; Jarvis LA; Pogue B; Gladstone DJ
    J Appl Clin Med Phys; 2020 Jun; 21(6):158-162. PubMed ID: 32306551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monte Carlo study of the relationship between skin dose and optically stimulated luminescence dosimeter dose in Pd-103 permanent breast seed implant brachytherapy.
    Nich S; Kirkby C; Villarreal-Barajas JE
    Brachytherapy; 2019; 18(3):387-395. PubMed ID: 30792005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Validation of OSLD and a treatment planning system for surface dose determination in IMRT treatments.
    Zhuang AH; Olch AJ
    Med Phys; 2014 Aug; 41(8):081720. PubMed ID: 25086530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Verification using in vivo optically stimulated luminescent dosimetry of the predicted skin surface dose in patients receiving postmastectomy radiotherapy.
    Wake JR; Chen FQ; Ashworth S; Byth K; Wang W; Stuart KE
    Med Dosim; 2021 Summer; 46(2):e1-e6. PubMed ID: 33941320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of a non-contact imaging scintillator-based dosimetry system for total skin electron therapy.
    Tendler II; Bruza P; Jermyn M; Cao X; Williams BB; Jarvis LA; Pogue BW; Gladstone DJ
    Phys Med Biol; 2019 Jun; 64(12):125025. PubMed ID: 31035267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of optically stimulated luminescent dosimeters, OSLDs, for clinical dosimetric measurements.
    Jursinic PA
    Med Phys; 2007 Dec; 34(12):4594-604. PubMed ID: 18196786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of nanoDot optically stimulated luminescence detectors and high-sensitivity MCP-N thermoluminescent detectors in the 40-300 kVp energy range.
    Poirier Y; Kuznetsova S; Villarreal-Barajas JE
    Med Phys; 2018 Jan; 45(1):402-413. PubMed ID: 29164632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Al
    Christensen JB; Togno M; Nesteruk KP; Psoroulas S; Meer D; Weber DC; Lomax T; Yukihara EG; Safai S
    Phys Med Biol; 2021 Apr; 66(8):. PubMed ID: 33571973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A practical method for the reuse of nanoDot OSLDs and predicting sensitivities up to at least 7000 cGy.
    Zhuang AH; Olch AJ
    Med Phys; 2020 Apr; 47(4):1481-1488. PubMed ID: 32009242
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Baba MH; Singh BK; Wani SQ
    J Med Phys; 2022; 47(4):362-366. PubMed ID: 36908494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in optically stimulated luminescent dosimeter (OSLD) dosimetric characteristics with accumulated dose.
    Jursinic PA
    Med Phys; 2010 Jan; 37(1):132-40. PubMed ID: 20175474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo dosimetry with optically stimulated dosimeters and RTQA2 radiochromic film for intraoperative radiotherapy of the breast.
    Price C; Pederson A; Frazier C; Duttenhaver J
    Med Phys; 2013 Sep; 40(9):091716. PubMed ID: 24007149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative dose evaluations between XVI and OBI cone beam CT systems using Gafchromic XRQA2 film and nanoDot optical stimulated luminescence dosimeters.
    Giaddui T; Cui Y; Galvin J; Yu Y; Xiao Y
    Med Phys; 2013 Jun; 40(6):062102. PubMed ID: 23718600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Commissioning optically stimulated luminescence in vivo dosimeters for fast neutron therapy.
    Young LA; Yang F; Woodworth D; McCormick Z; Sandison G
    Med Phys; 2016 Jan; 43(1):314. PubMed ID: 26745925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.