These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 31890018)
1. Embryogenic cell suspensions for high-capacity genetic transformation and regeneration of switchgrass ( Ondzighi-Assoume CA; Willis JD; Ouma WK; Allen SM; King Z; Parrott WA; Liu W; Burris JN; Lenaghan SC; Stewart CN Biotechnol Biofuels; 2019; 12():290. PubMed ID: 31890018 [TBL] [Abstract][Full Text] [Related]
2. Inside out: high-efficiency plant regeneration and Agrobacterium-mediated transformation of upland and lowland switchgrass cultivars. Liu YR; Cen HF; Yan JP; Zhang YW; Zhang WJ Plant Cell Rep; 2015 Jul; 34(7):1099-108. PubMed ID: 25698105 [TBL] [Abstract][Full Text] [Related]
3. Genetic transformation of switchgrass. Xi Y; Ge Y; Wang ZY Methods Mol Biol; 2009; 581():53-9. PubMed ID: 19768615 [TBL] [Abstract][Full Text] [Related]
4. Switchgrass (Panicum virgatum L.) cell suspension cultures: Establishment, characterization, and application. Mazarei M; Al-Ahmad H; Rudis MR; Joyce BL; Stewart CN Plant Sci; 2011 Dec; 181(6):712-5. PubMed ID: 21958714 [TBL] [Abstract][Full Text] [Related]
5. A simplified protocol for genetic transformation of switchgrass (Panicum virgatum L.). Ramamoorthy R; Kumar PP Plant Cell Rep; 2012 Oct; 31(10):1923-31. PubMed ID: 22733209 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of parameters affecting switchgrass tissue culture: toward a consolidated procedure for Lin CY; Donohoe BS; Ahuja N; Garrity DM; Qu R; Tucker MP; Himmel ME; Wei H Plant Methods; 2017; 13():113. PubMed ID: 29270209 [TBL] [Abstract][Full Text] [Related]
7. Biolistic transformation of elite genotypes of switchgrass (Panicum virgatum L.). King ZR; Bray AL; Lafayette PR; Parrott WA Plant Cell Rep; 2014 Feb; 33(2):313-22. PubMed ID: 24177598 [TBL] [Abstract][Full Text] [Related]
8. A simple and reliable multi-gene transformation method for switchgrass. Ogawa Y; Shirakawa M; Koumoto Y; Honda M; Asami Y; Kondo Y; Hara-Nishimura I Plant Cell Rep; 2014 Jul; 33(7):1161-72. PubMed ID: 24700247 [TBL] [Abstract][Full Text] [Related]
9. Protocol for Agrobacterium-Mediated Transformation and Transgenic Plant Production of Switchgrass. Chen Q; Song GQ Methods Mol Biol; 2019; 1864():105-115. PubMed ID: 30415332 [TBL] [Abstract][Full Text] [Related]
10. Improved tissue culture conditions for the emerging C Grant JN; Burris JN; Stewart CN; Lenaghan SC BMC Biotechnol; 2017 Apr; 17(1):39. PubMed ID: 28449656 [TBL] [Abstract][Full Text] [Related]
11. Regeneration of transgenic cassava plants (Manihot esculenta Crantz) through Agrobacterium-mediated transformation of embryogenic suspension cultures. González AE; Schöpke C; Taylor NJ; Beachy RN; Fauquet CM Plant Cell Rep; 1998 Aug; 17(11):827-831. PubMed ID: 30736551 [TBL] [Abstract][Full Text] [Related]
12. Genetic Transformation of Recalcitrant Upland Switchgrass Using Morphogenic Genes. Xu N; Kang M; Zobrist JD; Wang K; Fei SZ Front Plant Sci; 2021; 12():781565. PubMed ID: 35211127 [TBL] [Abstract][Full Text] [Related]
13. Overexpression of OsPIL1 enhanced biomass yield and saccharification efficiency in switchgrass. Yan J; Liu Y; Wang K; Li D; Hu Q; Zhang W Plant Sci; 2018 Nov; 276():143-151. PubMed ID: 30348312 [TBL] [Abstract][Full Text] [Related]
14. Agrobacterium-mediated genetic transformation of Coffea arabica (L.) is greatly enhanced by using established embryogenic callus cultures. Ribas AF; Dechamp E; Champion A; Bertrand B; Combes MC; Verdeil JL; Lapeyre F; Lashermes P; Etienne H BMC Plant Biol; 2011 May; 11():92. PubMed ID: 21595964 [TBL] [Abstract][Full Text] [Related]
15. Pollen-mediated gene flow from transgenic to non-transgenic switchgrass (Panicum virgatum L.) in the field. Millwood R; Nageswara-Rao M; Ye R; Terry-Emert E; Johnson CR; Hanson M; Burris JN; Kwit C; Stewart CN BMC Biotechnol; 2017 May; 17(1):40. PubMed ID: 28464851 [TBL] [Abstract][Full Text] [Related]
16. Gateway-compatible vectors for high-throughput gene functional analysis in switchgrass (Panicum virgatum L.) and other monocot species. Mann DG; Lafayette PR; Abercrombie LL; King ZR; Mazarei M; Halter MC; Poovaiah CR; Baxter H; Shen H; Dixon RA; Parrott WA; Neal Stewart C Plant Biotechnol J; 2012 Feb; 10(2):226-36. PubMed ID: 21955653 [TBL] [Abstract][Full Text] [Related]
17. Development of a rapid, low-cost protoplast transfection system for switchgrass (Panicum virgatum L.). Burris KP; Dlugosz EM; Collins AG; Stewart CN; Lenaghan SC Plant Cell Rep; 2016 Mar; 35(3):693-704. PubMed ID: 26685665 [TBL] [Abstract][Full Text] [Related]
18. Silencing Mazarei M; Baxter HL; Srivastava A; Li G; Xie H; Dumitrache A; Rodriguez M; Natzke JM; Zhang JY; Turner GB; Sykes RW; Davis MF; Udvardi MK; Wang ZY; Davison BH; Blancaflor EB; Tang Y; Stewart CN Front Plant Sci; 2020; 11():843. PubMed ID: 32636863 [TBL] [Abstract][Full Text] [Related]
19. Expression of a bacterial 3-dehydroshikimate dehydratase (QsuB) reduces lignin and improves biomass saccharification efficiency in switchgrass (Panicum virgatum L.). Hao Z; Yogiswara S; Wei T; Benites VT; Sinha A; Wang G; Baidoo EEK; Ronald PC; Scheller HV; Loqué D; Eudes A BMC Plant Biol; 2021 Jan; 21(1):56. PubMed ID: 33478381 [TBL] [Abstract][Full Text] [Related]
20. Development and use of a switchgrass ( Nelson RS; Stewart CN; Gou J; Holladay S; Gallego-Giraldo L; Flanagan A; Mann DGJ; Hisano H; Wuddineh WA; Poovaiah CR; Srivastava A; Biswal AK; Shen H; Escamilla-Treviño LL; Yang J; Hardin CF; Nandakumar R; Fu C; Zhang J; Xiao X; Percifield R; Chen F; Bennetzen JL; Udvardi M; Mazarei M; Dixon RA; Wang ZY; Tang Y; Mohnen D; Davison BH Biotechnol Biofuels; 2017; 10():309. PubMed ID: 29299059 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]