BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

428 related articles for article (PubMed ID: 31890020)

  • 1. Nitrogen-dependent coordination of cell cycle, quiescence and TAG accumulation in Chlamydomonas.
    Takeuchi T; Benning C
    Biotechnol Biofuels; 2019; 12():292. PubMed ID: 31890020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic and gene expression changes triggered by nitrogen deprivation in the photoautotrophically grown microalgae Chlamydomonas reinhardtii and Coccomyxa sp. C-169.
    Msanne J; Xu D; Konda AR; Casas-Mollano JA; Awada T; Cahoon EB; Cerutti H
    Phytochemistry; 2012 Mar; 75():50-9. PubMed ID: 22226037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overexpression of a
    Zhao J; Ge Y; Liu K; Yamaoka Y; Zhang D; Chi Z; Akkaya M; Kong F
    J Agric Food Chem; 2023 Nov; 71(46):17833-17841. PubMed ID: 37934701
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The protein Compromised Hydrolysis of Triacylglycerols 7 (CHT7) acts as a repressor of cellular quiescence in Chlamydomonas.
    Tsai CH; Warakanont J; Takeuchi T; Sears BB; Moellering ER; Benning C
    Proc Natl Acad Sci U S A; 2014 Nov; 111(44):15833-8. PubMed ID: 25313078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional photosystem I maintains proper energy balance during nitrogen depletion in
    Gargouri M; Bates PD; Park JJ; Kirchhoff H; Gang DR
    Biotechnol Biofuels; 2017; 10():89. PubMed ID: 28413444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microalgal lipids biochemistry and biotechnological perspectives.
    Bellou S; Baeshen MN; Elazzazy AM; Aggeli D; Sayegh F; Aggelis G
    Biotechnol Adv; 2014 Dec; 32(8):1476-93. PubMed ID: 25449285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Target of rapamycin (TOR) plays a critical role in triacylglycerol accumulation in microalgae.
    Imamura S; Kawase Y; Kobayashi I; Sone T; Era A; Miyagishima SY; Shimojima M; Ohta H; Tanaka K
    Plant Mol Biol; 2015 Oct; 89(3):309-18. PubMed ID: 26350402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipid remodeling regulator 1 (LRL1) is differently involved in the phosphorus-depletion response from PSR1 in Chlamydomonas reinhardtii.
    Hidayati NA; Yamada-Oshima Y; Iwai M; Yamano T; Kajikawa M; Sakurai N; Suda K; Sesoko K; Hori K; Obayashi T; Shimojima M; Fukuzawa H; Ohta H
    Plant J; 2019 Nov; 100(3):610-626. PubMed ID: 31350858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting TOR signaling for enhanced lipid productivity in algae.
    Prioretti L; Carriere F; Field B; Avilan L; Montané MH; Menand B; Gontero B
    Biochimie; 2020 Feb; 169():12-17. PubMed ID: 31265860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The target of rapamycin kinase affects biomass accumulation and cell cycle progression by altering carbon/nitrogen balance in synchronized Chlamydomonas reinhardtii cells.
    Jüppner J; Mubeen U; Leisse A; Caldana C; Wiszniewski A; Steinhauser D; Giavalisco P
    Plant J; 2018 Jan; 93(2):355-376. PubMed ID: 29172247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional analysis of three type-2 DGAT homologue genes for triacylglycerol production in the green microalga Chlamydomonas reinhardtii.
    La Russa M; Bogen C; Uhmeyer A; Doebbe A; Filippone E; Kruse O; Mussgnug JH
    J Biotechnol; 2012 Nov; 162(1):13-20. PubMed ID: 22542934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential effects of nitrogen and sulfur deprivation on growth and biodiesel feedstock production of Chlamydomonas reinhardtii.
    Cakmak T; Angun P; Demiray YE; Ozkan AD; Elibol Z; Tekinay T
    Biotechnol Bioeng; 2012 Aug; 109(8):1947-57. PubMed ID: 22383222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. System-level network analysis of nitrogen starvation and recovery in Chlamydomonas reinhardtii reveals potential new targets for increased lipid accumulation.
    Valledor L; Furuhashi T; Recuenco-Muñoz L; Wienkoop S; Weckwerth W
    Biotechnol Biofuels; 2014; 7():171. PubMed ID: 25663847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of regulatory network hubs that control lipid metabolism in Chlamydomonas reinhardtii.
    Gargouri M; Park JJ; Holguin FO; Kim MJ; Wang H; Deshpande RR; Shachar-Hill Y; Hicks LM; Gang DR
    J Exp Bot; 2015 Aug; 66(15):4551-66. PubMed ID: 26022256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The TOR Signaling Network in the Model Unicellular Green Alga Chlamydomonas reinhardtii.
    Pérez-Pérez ME; Couso I; Crespo JL
    Biomolecules; 2017 Jul; 7(3):. PubMed ID: 28704927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Triacylglycerol profiling of microalgae Chlamydomonas reinhardtii and Nannochloropsis oceanica.
    Liu B; Vieler A; Li C; Daniel Jones A; Benning C
    Bioresour Technol; 2013 Oct; 146():310-316. PubMed ID: 23948268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chlamydomonas cell cycle mutant crcdc5 over-accumulates starch and oil.
    Torres-Romero I; Kong F; Légeret B; Beisson F; Peltier G; Li-Beisson Y
    Biochimie; 2020 Feb; 169():54-61. PubMed ID: 31563539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ecological Engineering Helps Maximize Function in Algal Oil Production.
    Jackrel SL; Narwani A; Bentlage B; Levine RB; Hietala DC; Savage PE; Oakley TH; Denef VJ; Cardinale BJ
    Appl Environ Microbiol; 2018 Aug; 84(15):. PubMed ID: 29776927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated quantitative analysis of nitrogen stress response in Chlamydomonas reinhardtii using metabolite and protein profiling.
    Wase N; Black PN; Stanley BA; DiRusso CC
    J Proteome Res; 2014 Mar; 13(3):1373-96. PubMed ID: 24528286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TOR (target of rapamycin) is a key regulator of triacylglycerol accumulation in microalgae.
    Imamura S; Kawase Y; Kobayashi I; Shimojima M; Ohta H; Tanaka K
    Plant Signal Behav; 2016; 11(3):e1149285. PubMed ID: 26855321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.