BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 31890273)

  • 1. Spectral tuning mediated by helix III in butterfly long wavelength-sensitive visual opsins revealed by heterologous action spectroscopy.
    Saito T; Koyanagi M; Sugihara T; Nagata T; Arikawa K; Terakita A
    Zoological Lett; 2019; 5():35. PubMed ID: 31890273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The evolution of red color vision is linked to coordinated rhodopsin tuning in lycaenid butterflies.
    Liénard MA; Bernard GD; Allen A; Lassance JM; Song S; Childers RR; Yu N; Ye D; Stephenson A; Valencia-Montoya WA; Salzman S; Whitaker MRL; Calonje M; Zhang F; Pierce NE
    Proc Natl Acad Sci U S A; 2021 Feb; 118(6):. PubMed ID: 33547236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Eyeshine and spectral tuning of long wavelength-sensitive rhodopsins: no evidence for red-sensitive photoreceptors among five Nymphalini butterfly species.
    Briscoe AD; Bernard GD
    J Exp Biol; 2005 Feb; 208(Pt 4):687-96. PubMed ID: 15695761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of spectral tuning in the dolphin visual pigments.
    Fasick JI; Robsinson PR
    Biochemistry; 1998 Jan; 37(2):433-8. PubMed ID: 9471225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optogenetic Potentials of Diverse Animal Opsins: Parapinopsin, Peropsin, LWS Bistable Opsin.
    Koyanagi M; Saito T; Wada S; Nagata T; Kawano-Yamashita E; Terakita A
    Adv Exp Med Biol; 2021; 1293():141-151. PubMed ID: 33398811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-wavelength sensitive visual pigments of the guppy (Poecilia reticulata): six opsins expressed in a single individual.
    Weadick CJ; Chang BS
    BMC Evol Biol; 2007 Feb; 7 Suppl 1(Suppl 1):S11. PubMed ID: 17288569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Opsin phylogeny and evolution: a model for blue shifts in wavelength regulation.
    Chang BS; Crandall KA; Carulli JP; Hartl DL
    Mol Phylogenet Evol; 1995 Mar; 4(1):31-43. PubMed ID: 7620634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anion sensitivity and spectral tuning of middle- and long-wavelength-sensitive (MWS/LWS) visual pigments.
    Davies WI; Wilkie SE; Cowing JA; Hankins MW; Hunt DM
    Cell Mol Life Sci; 2012 Jul; 69(14):2455-64. PubMed ID: 22349213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visual pigment evolution in Characiformes: The dynamic interplay of teleost whole-genome duplication, surviving opsins and spectral tuning.
    Escobar-Camacho D; Carleton KL; Narain DW; Pierotti MER
    Mol Ecol; 2020 Jun; 29(12):2234-2253. PubMed ID: 32421918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular basis of spectral tuning in the red- and green-sensitive (M/LWS) pigments in vertebrates.
    Yokoyama S; Yang H; Starmer WT
    Genetics; 2008 Aug; 179(4):2037-43. PubMed ID: 18660543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protanopia (red color-blindness) in medaka: a simple system for producing color-blind fish and testing their spectral sensitivity.
    Homma N; Harada Y; Uchikawa T; Kamei Y; Fukamachi S
    BMC Genet; 2017 Feb; 18(1):10. PubMed ID: 28166717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Six opsins from the butterfly Papilio glaucus: molecular phylogenetic evidence for paralogous origins of red-sensitive visual pigments in insects.
    Briscoe AD
    J Mol Evol; 2000 Aug; 51(2):110-21. PubMed ID: 10948267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A cure for the blues: opsin duplication and subfunctionalization for short-wavelength sensitivity in jewel beetles (Coleoptera: Buprestidae).
    Lord NP; Plimpton RL; Sharkey CR; Suvorov A; Lelito JP; Willardson BM; Bybee SM
    BMC Evol Biol; 2016 May; 16(1):107. PubMed ID: 27193495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The retinal pigments of the whale shark (
    Fasick JI; Algrain H; Serba KM; Robinson PR
    Vis Neurosci; 2019 Nov; 36():E011. PubMed ID: 31718726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular advances to study the function, evolution and spectral tuning of arthropod visual opsins.
    Liénard MA; Valencia-Montoya WA; Pierce NE
    Philos Trans R Soc Lond B Biol Sci; 2022 Oct; 377(1862):20210279. PubMed ID: 36058235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two visual pigments in a single photoreceptor cell: identification and histological localization of three mRNAs encoding visual pigment opsins in the retina of the butterfly Papilio xuthus.
    Kitamoto J; Sakamoto K; Ozaki K; Mishina Y; Arikawa K
    J Exp Biol; 1998 May; 201(Pt 9):1255-61. PubMed ID: 9547302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Cone Opsin Repertoire of Osteoglossomorph Fishes: Gene Loss in Mormyrid Electric Fish and a Long Wavelength-Sensitive Cone Opsin That Survived 3R.
    Liu DW; Wang FY; Lin JJ; Thompson A; Lu Y; Vo D; Yan HY; Zakon H
    Mol Biol Evol; 2019 Mar; 36(3):447-457. PubMed ID: 30590689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visual adaptation in Lake Victoria cichlid fishes: depth-related variation of color and scotopic opsins in species from sand/mud bottoms.
    Terai Y; Miyagi R; Aibara M; Mizoiri S; Imai H; Okitsu T; Wada A; Takahashi-Kariyazono S; Sato A; Tichy H; Mrosso HDJ; Mzighani SI; Okada N
    BMC Evol Biol; 2017 Aug; 17(1):200. PubMed ID: 28830359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Daily activity patterns influence retinal morphology, signatures of selection, and spectral tuning of opsin genes in colubrid snakes.
    Hauzman E; Bonci DMO; Suárez-Villota EY; Neitz M; Ventura DF
    BMC Evol Biol; 2017 Dec; 17(1):249. PubMed ID: 29228925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The photochemical determinants of color vision: revealing how opsins tune their chromophore's absorption wavelength.
    Wang W; Geiger JH; Borhan B
    Bioessays; 2014 Jan; 36(1):65-74. PubMed ID: 24323922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.