These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 31890588)

  • 1. Development of both type I-B and type II CRISPR/Cas genome editing systems in the cellulolytic bacterium
    Walker JE; Lanahan AA; Zheng T; Toruno C; Lynd LR; Cameron JC; Olson DG; Eckert CA
    Metab Eng Commun; 2020 Jun; 10():e00116. PubMed ID: 31890588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploiting endogenous CRISPR-Cas system for multiplex genome editing in Clostridium tyrobutyricum and engineer the strain for high-level butanol production.
    Zhang J; Zong W; Hong W; Zhang ZT; Wang Y
    Metab Eng; 2018 May; 47():49-59. PubMed ID: 29530750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploiting the Type I-B CRISPR Genome Editing System in Thermoanaerobacterium aotearoense SCUT27 and Engineering the Strain for Enhanced Ethanol Production.
    Dai K; Fu H; Guo X; Qu C; Lan Y; Wang J
    Appl Environ Microbiol; 2022 Aug; 88(15):e0075122. PubMed ID: 35862665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR-Cas ribonucleoprotein mediated homology-directed repair for efficient targeted genome editing in microalgae
    Naduthodi MIS; Mohanraju P; Südfeld C; D'Adamo S; Barbosa MJ; van der Oost J
    Biotechnol Biofuels; 2019; 12():66. PubMed ID: 30962821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cas9 Nickase-Based Genome Editing in Clostridium cellulolyticum.
    Xu T; Tao X; Kempher ML; Zhou J
    Methods Mol Biol; 2022; 2479():227-243. PubMed ID: 35583742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of an Efficient Genome Editing Tool in Bacillus licheniformis Using CRISPR-Cas9 Nickase.
    Li K; Cai D; Wang Z; He Z; Chen S
    Appl Environ Microbiol; 2018 Mar; 84(6):. PubMed ID: 29330178
    [No Abstract]   [Full Text] [Related]  

  • 7. Editing of the Bacillus subtilis Genome by the CRISPR-Cas9 System.
    Altenbuchner J
    Appl Environ Microbiol; 2016 Sep; 82(17):5421-7. PubMed ID: 27342565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Harnessing heterologous and endogenous CRISPR-Cas machineries for efficient markerless genome editing in Clostridium.
    Pyne ME; Bruder MR; Moo-Young M; Chung DA; Chou CP
    Sci Rep; 2016 May; 6():25666. PubMed ID: 27157668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dramatic Improvement of CRISPR/Cas9 Editing in
    Ng H; Dean N
    mSphere; 2017; 2(2):. PubMed ID: 28435892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR/Cas9-mediated ssDNA Recombineering in
    Liu J; Wang Y; Zheng P; Sun J
    Bio Protoc; 2018 Oct; 8(19):e3038. PubMed ID: 34532515
    [No Abstract]   [Full Text] [Related]  

  • 11. Efficient and Scalable Precision Genome Editing in
    Penewit K; Holmes EA; McLean K; Ren M; Waalkes A; Salipante SJ
    mBio; 2018 Feb; 9(1):. PubMed ID: 29463653
    [No Abstract]   [Full Text] [Related]  

  • 12. Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum.
    Liu J; Wang Y; Lu Y; Zheng P; Sun J; Ma Y
    Microb Cell Fact; 2017 Nov; 16(1):205. PubMed ID: 29145843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advance trends in targeting homology-directed repair for accurate gene editing: An inclusive review of small molecules and modified CRISPR-Cas9 systems.
    Shams F; Bayat H; Mohammadian O; Mahboudi S; Vahidnezhad H; Soosanabadi M; Rahimpour A
    Bioimpacts; 2022; 12(4):371-391. PubMed ID: 35975201
    [No Abstract]   [Full Text] [Related]  

  • 14. Extending CRISPR-Cas9 Technology from Genome Editing to Transcriptional Engineering in the Genus Clostridium.
    Bruder MR; Pyne ME; Moo-Young M; Chung DA; Chou CP
    Appl Environ Microbiol; 2016 Oct; 82(20):6109-6119. PubMed ID: 27496775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid DNA unwinding accelerates genome editing by engineered CRISPR-Cas9.
    Eggers AR; Chen K; Soczek KM; Tuck OT; Doherty EE; Xu B; Trinidad MI; Thornton BW; Yoon PH; Doudna JA
    Cell; 2024 Jun; 187(13):3249-3261.e14. PubMed ID: 38781968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNA-guided genome editing in plants using a CRISPR-Cas system.
    Xie K; Yang Y
    Mol Plant; 2013 Nov; 6(6):1975-83. PubMed ID: 23956122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increasing the efficiency of CRISPR-Cas9-VQR precise genome editing in rice.
    Hu X; Meng X; Liu Q; Li J; Wang K
    Plant Biotechnol J; 2018 Jan; 16(1):292-297. PubMed ID: 28605576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR/Cas9 and genome editing in Drosophila.
    Bassett AR; Liu JL
    J Genet Genomics; 2014 Jan; 41(1):7-19. PubMed ID: 24480743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The CRISPR-Cas system for plant genome editing: advances and opportunities.
    Kumar V; Jain M
    J Exp Bot; 2015 Jan; 66(1):47-57. PubMed ID: 25371501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent Advancements in Reducing the Off-Target Effect of CRISPR-Cas9 Genome Editing.
    Asmamaw Mengstie M; Teshome Azezew M; Asmamaw Dejenie T; Teshome AA; Tadele Admasu F; Behaile Teklemariam A; Tilahun Mulu A; Mekonnen Agidew M; Adugna DG; Geremew H; Abebe EC
    Biologics; 2024; 18():21-28. PubMed ID: 38260716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.