These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 31890954)

  • 1. Smartphone-based image analysis for evaluation of magnetic textile solid phase extraction of colored compounds.
    Safarik I; Baldikova E; Prochazkova J; Pospiskova K
    Heliyon; 2019 Dec; 5(12):e02995. PubMed ID: 31890954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Semiquantitative determination of food acid dyes by magnetic textile solid phase extraction followed by image analysis.
    Safarik I; Mullerova S; Pospiskova K
    Food Chem; 2019 Feb; 274():215-219. PubMed ID: 30372929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Semiquantitative color catcher and smartphone-based analysis of synthetic food dyes in alcohol containing beverages.
    Safarik I; Prochazkova J
    Talanta; 2023 Sep; 262():124686. PubMed ID: 37229816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Efficiency of Color Space Channels to Quantify Color and Color Intensity Change in Liquids, pH Strips, and Lateral Flow Assays with Smartphones.
    Nelis JLD; Bura L; Zhao Y; Burkin KM; Rafferty K; Elliott CT; Campbell K
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31766483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A feasible image-based colorimetric assay using a smartphone RGB camera for point-of-care monitoring of diabetes.
    Wang TT; Lio CK; Huang H; Wang RY; Zhou H; Luo P; Qing LS
    Talanta; 2020 Jan; 206():120211. PubMed ID: 31514873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Randomized Combined Channel Approach for the Quantification of Color- and Intensity-Based Assays with Smartphones.
    Nelis JLD; Zhao Y; Bura L; Rafferty K; Elliott CT; Campbell K
    Anal Chem; 2020 Jun; 92(11):7852-7860. PubMed ID: 32383383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compressive recovery of smartphone RGB spectral sensitivity functions.
    Ji Y; Kwak Y; Park SM; Kim YL
    Opt Express; 2021 Apr; 29(8):11947-11961. PubMed ID: 33984965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RGBradford: Protein Quantitation with a Smartphone Camera.
    Moreira DC
    J Vis Exp; 2023 Sep; (199):. PubMed ID: 37747186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photography by Cameras Integrated in Smartphones as a Tool for Analytical Chemistry Represented by an Butyrylcholinesterase Activity Assay.
    Pohanka M
    Sensors (Basel); 2015 Jun; 15(6):13752-62. PubMed ID: 26110404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulating colored textile wastewater by 3/31 wavelength ADMI methods in Taiwan.
    Kao CM; Chou MS; Fang WL; Liu BW; Huang BR
    Chemosphere; 2001 Aug; 44(5):1055-63. PubMed ID: 11513391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Segmentation and cavity filling of color image from stained trabecular sections based on HSV space].
    Lu C; Wu T
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Apr; 29(2):260-3. PubMed ID: 22616170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acetylcholinesterase Inhibitors Assay Using Colorimetric pH Sensitive Strips and Image Analysis by a Smartphone.
    Kostelnik A; Cegan A; Pohanka M
    Int J Anal Chem; 2017; 2017():3712384. PubMed ID: 28286520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A smartphone-based quantitative detection platform of mycotoxins based on multiple-color upconversion nanoparticles.
    Yang M; Zhang Y; Cui M; Tian Y; Zhang S; Peng K; Xu H; Liao Z; Wang H; Chang J
    Nanoscale; 2018 Aug; 10(33):15865-15874. PubMed ID: 30105335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine-Learning-Assisted Analysis of Colorimetric Assays on Paper Analytical Devices.
    Khanal B; Pokhrel P; Khanal B; Giri B
    ACS Omega; 2021 Dec; 6(49):33837-33845. PubMed ID: 34926930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient color correction method for smartphone camera-based health monitoring application.
    Duc Dang ; Chae Ho Cho ; Daeik Kim ; Oh Seok Kwon ; Jo Woon Chong
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():799-802. PubMed ID: 29059993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Smartphone app-based/portable sensor for the detection of fluoro-surfactant PFOA.
    Fang C; Zhang X; Dong Z; Wang L; Megharaj M; Naidu R
    Chemosphere; 2018 Jan; 191():381-388. PubMed ID: 29049961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polypyrrole-magnetite dispersive micro-solid-phase extraction combined with ultraviolet-visible spectrophotometry for the determination of rhodamine 6G and crystal violet in textile wastewater.
    Kamaruddin AF; Sanagi MM; Wan Ibrahim WA; Md Shukri DS; Abdul Keyon AS
    J Sep Sci; 2017 Nov; 40(21):4256-4263. PubMed ID: 28851082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Smartphone-Enabled Quantification of Potassium in Blood Plasma.
    Hidayat AS; Horino H; Rzeznicka II
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantification of Colorimetric Data for Paper-Based Analytical Devices.
    Soda Y; Bakker E
    ACS Sens; 2019 Dec; 4(12):3093-3101. PubMed ID: 31744290
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monitoring of fluoride in water samples using a smartphone.
    Levin S; Krishnan S; Rajkumar S; Halery N; Balkunde P
    Sci Total Environ; 2016 May; 551-552():101-7. PubMed ID: 26874766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.