BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 31891259)

  • 1. Comparative Study of the Electronic Structures of μ-Oxo, μ-Nitrido, and μ-Carbido Diiron Octapropylporphyrazine Complexes and Their Catalytic Activity in Cyclopropanation of Olefins.
    Cailler LP; Clémancey M; Barilone J; Maldivi P; Latour JM; Sorokin AB
    Inorg Chem; 2020 Jan; 59(2):1104-1116. PubMed ID: 31891259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. X-ray absorption and emission spectroscopies of X-bridged diiron phthalocyanine complexes (FePc)2X (X = C, N, O) combined with DFT study of (FePc)2X and their high-valent diiron oxo complexes.
    Colomban C; Kudrik EV; Briois V; Shwarbrick JC; Sorokin AB; Afanasiev P
    Inorg Chem; 2014 Nov; 53(21):11517-30. PubMed ID: 25338225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and characterization of μ-nitrido, μ-carbido and μ-oxo dimers of iron octapropylporphyrazine.
    Colomban C; Kudrik EV; Tyurin DV; Albrieux F; Nefedov SE; Afanasiev P; Sorokin AB
    Dalton Trans; 2015 Feb; 44(5):2240-51. PubMed ID: 25519523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. μ-Nitrido Diiron Macrocyclic Platform: Particular Structure for Particular Catalysis.
    Afanasiev P; Sorokin AB
    Acc Chem Res; 2016 Apr; 49(4):583-93. PubMed ID: 26967682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interplay of Electronic Cooperativity and Exchange Coupling in Regulating the Reactivity of Diiron(IV)-oxo Complexes towards C-H and O-H Bond Activation.
    Ansari A; Ansari M; Singha A; Rajaraman G
    Chemistry; 2017 Jul; 23(42):10110-10125. PubMed ID: 28498623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidation of methane by an N-bridged high-valent diiron-oxo species: electronic structure implications on the reactivity.
    Ansari M; Vyas N; Ansari A; Rajaraman G
    Dalton Trans; 2015 Sep; 44(34):15232-43. PubMed ID: 25978584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mixed-valent [FeIV(mu-O)(mu-carboxylato)2FeIII]3+ core.
    Slep LD; Mijovilovich A; Meyer-Klaucke W; Weyhermüller T; Bill E; Bothe E; Neese F; Wieghardt K
    J Am Chem Soc; 2003 Dec; 125(50):15554-70. PubMed ID: 14664603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative insight into electronic properties and reactivities toward C-H bond activation by iron(IV)-nitrido, iron(IV)-oxo, and iron(IV)-sulfido complexes: a theoretical investigation.
    Tang H; Guan J; Liu H; Huang X
    Inorg Chem; 2013 Mar; 52(5):2684-96. PubMed ID: 23425218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mössbauer and DFT study of the ferromagnetically coupled diiron(IV) precursor to a complex with an Fe(IV)(2)O(2) diamond core.
    Martinho M; Xue G; Fiedler AT; Que L; Bominaar EL; Münck E
    J Am Chem Soc; 2009 Apr; 131(16):5823-30. PubMed ID: 19338307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reaction of (mu-oxo)diiron(III) core with CO2 in N-methylimidazole: formation of mono(mu-carboxylato)(mu-oxo)diiron(III) complexes with N-methylimidazole as ligands.
    Marlin DS; Olmstead MM; Mascharak PK
    Inorg Chem; 2003 Mar; 42(5):1681-7. PubMed ID: 12611539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site-selective formation of an iron(iv)-oxo species at the more electron-rich iron atom of heteroleptic μ-nitrido diiron phthalocyanines.
    İşci Ü; Faponle AS; Afanasiev P; Albrieux F; Briois V; Ahsen V; Dumoulin F; Sorokin AB; de Visser SP
    Chem Sci; 2015 Aug; 6(8):5063-5075. PubMed ID: 30155008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of a chemical trigger for electron transfer to characterize a precursor to cluster X in assembly of the iron-radical cofactor of Escherichia coli ribonucleotide reductase.
    Saleh L; Krebs C; Ley BA; Naik S; Huynh BH; Bollinger JM
    Biochemistry; 2004 May; 43(20):5953-64. PubMed ID: 15147179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Properties and reactivity of μ-nitrido-bridged dimetal porphyrinoid complexes: how does ruthenium compare to iron?
    Mubarak MQE; Sorokin AB; de Visser SP
    J Biol Inorg Chem; 2019 Oct; 24(7):1127-1134. PubMed ID: 31560098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protonation of an oxo-bridged diiron unit gives two different iron centers: synthesis and structure of a new class of diiron(III)-μ-hydroxo bisporphyrins and the control of spin states by using counterions.
    Bhowmik S; Ghosh SK; Layek S; Verma HC; Rath SP
    Chemistry; 2012 Oct; 18(41):13025-37. PubMed ID: 22961941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and magnetic properties of a non-heme diiron complex singly bridged by a hydroxo group.
    Jullien J; Juhász G; Mialane P; Dumas E; Mayer CR; Marrot J; Rivière E; Bominaar EL; Münck E; Sécheresse F
    Inorg Chem; 2006 Aug; 45(17):6922-7. PubMed ID: 16903750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative oxidative ability of mononuclear and dinuclear high-valent iron-oxo species towards the activation of methane: does the axial/bridge atom modulate the reactivity?
    Ansari M; Rajaraman G
    Dalton Trans; 2023 Jan; 52(2):308-325. PubMed ID: 36504243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling features of the non-heme diiron cores in O2-activating enzymes through the synthesis, characterization, and oxidation of 1,8-naphthyridine-based complexes.
    Kuzelka J; Mukhopadhyay S; Spingler B; Lippard SJ
    Inorg Chem; 2003 Oct; 42(20):6447-57. PubMed ID: 14514321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-valent diiron species generated from N-bridged diiron phthalocyanine and H(2)O(2).
    Afanasiev P; Kudrik EV; Millet JM; Bouchu D; Sorokin AB
    Dalton Trans; 2011 Jan; 40(3):701-10. PubMed ID: 21072406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wolves in Sheep's Clothing: μ-Oxo-Diiron Corroles Revisited.
    Ganguly S; Vazquez-Lima H; Ghosh A
    Chemistry; 2016 Jul; 22(30):10336-40. PubMed ID: 27333259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling the active sites in metalloenzymes. 3. Density functional calculations on models for [Fe]-hydrogenase: structures and vibrational frequencies of the observed redox forms and the reaction mechanism at the Diiron Active Center.
    Cao Z; Hall MB
    J Am Chem Soc; 2001 Apr; 123(16):3734-42. PubMed ID: 11457105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.