These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 31891379)

  • 1. Tracking Joint Angles During Whole-Arm Movements Using Electromagnetic Sensors.
    Clark R; Dickinson T; Loaiza J; Geiger DW; Charles SK
    J Biomech Eng; 2020 Jul; 142(7):. PubMed ID: 31891379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A method for estimating three-dimensional human arm movement with two electromagnetic sensors.
    Rezzoug N; Jacquier-Bret J; Gorce P
    Comput Methods Biomech Biomed Engin; 2010 Dec; 13(6):663-8. PubMed ID: 21153971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinematics of human arm reconstructed from spatial tracking system recordings.
    Biryukova EV; Roby-Brami A; Frolov AA; Mokhtari M
    J Biomech; 2000 Aug; 33(8):985-95. PubMed ID: 10828329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shoulder movements during the initial phase of learning manual wheelchair propulsion in able-bodied subjects.
    Roux L; Hanneton S; Roby-Brami A
    Clin Biomech (Bristol, Avon); 2006; 21 Suppl 1():S45-51. PubMed ID: 16274903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of axis alignment on shoulder joint kinematics analysis during arm abduction.
    Levasseur A; Tétreault P; de Guise J; Nuño N; Hagemeister N
    Clin Biomech (Bristol, Avon); 2007 Aug; 22(7):758-66. PubMed ID: 17560698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A neural tracking and motor control approach to improve rehabilitation of upper limb movements.
    Goffredo M; Bernabucci I; Schmid M; Conforto S
    J Neuroeng Rehabil; 2008 Feb; 5():5. PubMed ID: 18251996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of the accuracy of a human arm model with seven degrees of freedom.
    Prokopenko RA; Frolov AA; Biryukova EV; Roby-Brami A
    J Biomech; 2001 Feb; 34(2):177-85. PubMed ID: 11165281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantification of the segmental kinematics of spontaneous infant movements.
    Karch D; Kim KS; Wochner K; Pietz J; Dickhaus H; Philippi H
    J Biomech; 2008 Sep; 41(13):2860-7. PubMed ID: 18707688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Upper Limb Kinematics Using Inertial and Magnetic Sensors: Comparison of Sensor-to-Segment Calibrations.
    Bouvier B; Duprey S; Claudon L; Dumas R; Savescu A
    Sensors (Basel); 2015 Jul; 15(8):18813-33. PubMed ID: 26263993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robot-based methodology for a kinematic and kinetic analysis of unconstrained, but reproducible upper extremity movement.
    Popovic N; Williams S; Schmitz-Rode T; Rau G; Disselhorst-Klug C
    J Biomech; 2009 Jul; 42(10):1570-1573. PubMed ID: 19442979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Review of arm motion analyses.
    Anglin C; Wyss UP
    Proc Inst Mech Eng H; 2000; 214(5):541-55. PubMed ID: 11109862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An MR-compatible gyroscope-based arm movement tracking system.
    Shirinbayan SI; Rieger JW
    J Neurosci Methods; 2017 Mar; 280():16-26. PubMed ID: 28147250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compensating for Soft-Tissue Artifact Using the Orientation of Distal Limb Segments During Electromagnetic Motion Capture of the Upper Limb.
    Bons Z; Dickinson T; Clark R; Beardsley K; Charles SK
    J Biomech Eng; 2022 Jul; 144(7):. PubMed ID: 34951462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of Joint Motion Sensing Efficiency According to the Implementation Method of SWCNT-Coated Fabric Motion Sensor.
    Cho HS; Yang JH; Lee JH; Lee JH
    Sensors (Basel); 2020 Jan; 20(1):. PubMed ID: 31947865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inertial Measurement Unit Sensor-to-Segment Calibration Comparison for Sport-Specific Motion Analysis.
    Ekdahl M; Loewen A; Erdman A; Sahin S; Ulman S
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37766040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inverse dynamics as a tool for motion analysis: arm tracking movements in cerebellar patients.
    Riener R; Straube A
    J Neurosci Methods; 1997 Mar; 72(1):87-96. PubMed ID: 9128172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergies reciprocally relate end-effector and joint-angles in rhythmic pointing movements.
    Valk TA; Mouton LJ; Otten E; Bongers RM
    Sci Rep; 2019 Nov; 9(1):17378. PubMed ID: 31758053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of two trunk electromagnetic sensor placement methods during shoulder motion analysis.
    Plummer HA; Pozzi F; Michener LA
    J Biomech; 2018 Feb; 68():132-135. PubMed ID: 29338846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human arm joints reconstruction algorithm in rehabilitation therapies assisted by end-effector robotic devices.
    Bertomeu-Motos A; Blanco A; Badesa FJ; Barios JA; Zollo L; Garcia-Aracil N
    J Neuroeng Rehabil; 2018 Feb; 15(1):10. PubMed ID: 29458397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A simple calibration for upper limb motion tracking and reconstruction.
    Wang Y; Xu J; Wu X; Pottie G; Kaiser W
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():5868-71. PubMed ID: 25571331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.