BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 31891416)

  • 1. Modeling beta-sheet peptide-protein interactions: Rosetta FlexPepDock in CAPRI rounds 38-45.
    Khramushin A; Marcu O; Alam N; Shimony O; Padhorny D; Brini E; Dill KA; Vajda S; Kozakov D; Schueler-Furman O
    Proteins; 2020 Aug; 88(8):1037-1049. PubMed ID: 31891416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FlexPepDock lessons from CAPRI peptide-protein rounds and suggested new criteria for assessment of model quality and utility.
    Marcu O; Dodson EJ; Alam N; Sperber M; Kozakov D; Lensink MF; Schueler-Furman O
    Proteins; 2017 Mar; 85(3):445-462. PubMed ID: 28002624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel sampling strategies and a coarse-grained score function for docking homomers, flexible heteromers, and oligosaccharides using Rosetta in CAPRI rounds 37-45.
    Roy Burman SS; Nance ML; Jeliazkov JR; Labonte JW; Lubin JH; Biswas N; Gray JJ
    Proteins; 2020 Aug; 88(8):973-985. PubMed ID: 31742764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance of ZDOCK and IRAD in CAPRI rounds 39-45.
    Vreven T; Vangaveti S; Borrman TM; Gaines JC; Weng Z
    Proteins; 2020 Aug; 88(8):1050-1054. PubMed ID: 31994784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Template-based modeling and ab-initio docking using CoDock in CAPRI.
    Kong R; Liu RR; Xu XM; Zhang DW; Xu XS; Shi H; Chang S
    Proteins; 2020 Aug; 88(8):1100-1109. PubMed ID: 32181952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure prediction of biological assemblies using GALAXY in CAPRI rounds 38-45.
    Park T; Woo H; Baek M; Yang J; Seok C
    Proteins; 2020 Aug; 88(8):1009-1017. PubMed ID: 31774573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance of human and server prediction in CAPRI rounds 38-45.
    Duan R; Qiu L; Xu X; Ma Z; Merideth BR; Shyu CR; Zou X
    Proteins; 2020 Aug; 88(8):1110-1120. PubMed ID: 32483825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Challenges and opportunities of automated protein-protein docking: HDOCK server vs human predictions in CAPRI Rounds 38-46.
    Yan Y; He J; Feng Y; Lin P; Tao H; Huang SY
    Proteins; 2020 Aug; 88(8):1055-1069. PubMed ID: 31994779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Docking proteins and peptides under evolutionary constraints in Critical Assessment of PRediction of Interactions rounds 38 to 45.
    Nadaradjane AA; Quignot C; Traoré S; Andreani J; Guerois R
    Proteins; 2020 Aug; 88(8):986-998. PubMed ID: 31746034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coarse-grained and atomic resolution biomolecular docking with the ATTRACT approach.
    Glashagen G; de Vries S; Uciechowska-Kaczmarzyk U; Samsonov SA; Murail S; Tuffery P; Zacharias M
    Proteins; 2020 Aug; 88(8):1018-1028. PubMed ID: 31785163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrative modeling of protein-protein interactions with pyDock for the new docking challenges.
    Rosell M; Rodríguez-Lumbreras LA; Romero-Durana M; Jiménez-García B; Díaz L; Fernández-Recio J
    Proteins; 2020 Aug; 88(8):999-1008. PubMed ID: 31746039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Template-based modeling of diverse protein interactions in CAPRI rounds 38-45.
    Dapkūnas J; Kairys V; Olechnovič K; Venclovas Č
    Proteins; 2020 Aug; 88(8):939-947. PubMed ID: 31697420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling protein-protein, protein-peptide, and protein-oligosaccharide complexes: CAPRI 7th edition.
    Lensink MF; Nadzirin N; Velankar S; Wodak SJ
    Proteins; 2020 Aug; 88(8):916-938. PubMed ID: 31886916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ClusPro in rounds 38 to 45 of CAPRI: Toward combining template-based methods with free docking.
    Padhorny D; Porter KA; Ignatov M; Alekseenko A; Beglov D; Kotelnikov S; Ashizawa R; Desta I; Alam N; Sun Z; Brini E; Dill K; Schueler-Furman O; Vajda S; Kozakov D
    Proteins; 2020 Aug; 88(8):1082-1090. PubMed ID: 32142178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An overview of data-driven HADDOCK strategies in CAPRI rounds 38-45.
    Koukos PI; Roel-Touris J; Ambrosetti F; Geng C; Schaarschmidt J; Trellet ME; Melquiond ASJ; Xue LC; Honorato RV; Moreira I; Kurkcuoglu Z; Vangone A; Bonvin AMJJ
    Proteins; 2020 Aug; 88(8):1029-1036. PubMed ID: 31886559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy-based graph convolutional networks for scoring protein docking models.
    Cao Y; Shen Y
    Proteins; 2020 Aug; 88(8):1091-1099. PubMed ID: 32144844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance and enhancement of the LZerD protein assembly pipeline in CAPRI 38-46.
    Christoffer C; Terashi G; Shin WH; Aderinwale T; Maddhuri Venkata Subramaniya SR; Peterson L; Verburgt J; Kihara D
    Proteins; 2020 Aug; 88(8):948-961. PubMed ID: 31697428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rosetta FlexPepDock web server--high resolution modeling of peptide-protein interactions.
    London N; Raveh B; Cohen E; Fathi G; Schueler-Furman O
    Nucleic Acids Res; 2011 Jul; 39(Web Server issue):W249-53. PubMed ID: 21622962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How to choose templates for modeling of protein complexes: Insights from benchmarking template-based docking.
    Chakravarty D; McElfresh GW; Kundrotas PJ; Vakser IA
    Proteins; 2020 Aug; 88(8):1070-1081. PubMed ID: 31994759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Harnessing protein folding neural networks for peptide-protein docking.
    Tsaban T; Varga JK; Avraham O; Ben-Aharon Z; Khramushin A; Schueler-Furman O
    Nat Commun; 2022 Jan; 13(1):176. PubMed ID: 35013344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.