BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 31891435)

  • 1. Three-dimensional carbon-based anodes promoted the accumulation of exoelectrogens in bioelectrochemical systems.
    Wu Y; He G; Chen S; Wang Z
    Water Environ Res; 2020 Jul; 92(7):997-1005. PubMed ID: 31891435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Community analysis of biofilms on flame-oxidized stainless steel anodes in microbial fuel cells fed with different substrates.
    Eyiuche NJ; Asakawa S; Yamashita T; Ikeguchi A; Kitamura Y; Yokoyama H
    BMC Microbiol; 2017 Jun; 17(1):145. PubMed ID: 28662640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of electrode potentials on the microbial community of photo bioelectrochemical systems.
    Wu Y; Zheng Y; Xiao Y; Wang Z; Zhao F
    World J Microbiol Biotechnol; 2017 Jul; 33(7):149. PubMed ID: 28638986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of waterproof breathable membrane based cathodes on performance and biofilm microbiomes in bioelectrochemical systems.
    Yang Y; Zhuang H; Cui H; Liu B; Xie G; Xing D
    Sci Total Environ; 2021 Jan; 753():142281. PubMed ID: 33207445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of surface charge and hydrophobicity on anodic biofilm formation, community composition, and current generation in bioelectrochemical systems.
    Guo K; Freguia S; Dennis PG; Chen X; Donose BC; Keller J; Gooding JJ; Rabaey K
    Environ Sci Technol; 2013 Jul; 47(13):7563-70. PubMed ID: 23745742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A three-dimensionally ordered macroporous carbon derived from a natural resource as anode for microbial bioelectrochemical systems.
    Chen S; He G; Hu X; Xie M; Wang S; Zeng D; Hou H; Schröder U
    ChemSusChem; 2012 Jun; 5(6):1059-63. PubMed ID: 22467379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resilience, Dynamics, and Interactions within a Model Multispecies Exoelectrogenic-Biofilm Community.
    Prokhorova A; Sturm-Richter K; Doetsch A; Gescher J
    Appl Environ Microbiol; 2017 Mar; 83(6):. PubMed ID: 28087529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Influence of Carbonization Temperature on Bacterial Community of the Biological Carbon Electrode Based on High-throughput Sequencing Technology].
    Wu YC; He GH; Zheng Y; Chen SL; Wang ZJ; Zhao F
    Huan Jing Ke Xue; 2016 Jun; 37(6):2271-2275. PubMed ID: 29964896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heat-treated stainless steel felt as scalable anode material for bioelectrochemical systems.
    Guo K; Soeriyadi AH; Feng H; Prévoteau A; Patil SA; Gooding JJ; Rabaey K
    Bioresour Technol; 2015 Nov; 195():46-50. PubMed ID: 26112346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flame oxidation of stainless steel felt enhances anodic biofilm formation and current output in bioelectrochemical systems.
    Guo K; Donose BC; Soeriyadi AH; Prévoteau A; Patil SA; Freguia S; Gooding JJ; Rabaey K
    Environ Sci Technol; 2014 Jun; 48(12):7151-6. PubMed ID: 24911921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional high performance free-standing anode by one-step carbonization of pinecone in microbial fuel cells.
    Wang R; Liu D; Yan M; Zhang L; Chang W; Sun Z; Liu S; Guo C
    Bioresour Technol; 2019 Nov; 292():121956. PubMed ID: 31430673
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Autotrophic denitrification performance and bacterial community at biocathodes of bioelectrochemical systems with either abiotic or biotic anodes.
    Nguyen VK; Hong S; Park Y; Jo K; Lee T
    J Biosci Bioeng; 2015 Feb; 119(2):180-7. PubMed ID: 25073684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Contact Area and Shape of Anode Current Collectors on Bacterial Community Structure in Microbial Fuel Cells.
    Paitier A; Haddour N; Gondran C; Vogel TM
    Molecules; 2022 Mar; 27(7):. PubMed ID: 35408642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-performance free-standing microbial fuel cell anode derived from Chinese date for enhanced electron transfer rates.
    Meng L; Feng M; Sun J; Wang R; Qu F; Yang C; Guo W
    Bioresour Technol; 2022 Jun; 353():127151. PubMed ID: 35421564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel photoactive and three-dimensional stainless steel anode dramatically enhances the current density of bioelectrochemical systems.
    Feng H; Tang C; Wang Q; Liang Y; Shen D; Guo K; He Q; Jayaprada T; Zhou Y; Chen T; Ying X; Wang M
    Chemosphere; 2018 Apr; 196():476-481. PubMed ID: 29324387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electricity generation and microbial community changes in microbial fuel cells packed with different anodic materials.
    Sun Y; Wei J; Liang P; Huang X
    Bioresour Technol; 2011 Dec; 102(23):10886-91. PubMed ID: 21983409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Meta-proteomic analysis of protein expression distinctive to electricity-generating biofilm communities in air-cathode microbial fuel cells.
    Chignell JF; De Long SK; Reardon KF
    Biotechnol Biofuels; 2018; 11():121. PubMed ID: 29713380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrode plate-culture methods for colony isolation of exoelectrogens from anode microbiomes.
    Ueoka N; Kouzuma A; Watanabe K
    Bioelectrochemistry; 2018 Dec; 124():1-6. PubMed ID: 29990596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pulse electromagnetic fields enhance extracellular electron transfer in magnetic bioelectrochemical systems.
    Zhou H; Liu B; Wang Q; Sun J; Xie G; Ren N; Ren ZJ; Xing D
    Biotechnol Biofuels; 2017; 10():238. PubMed ID: 29075322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybridization of photoanode and bioanode to enhance the current production of bioelectrochemical systems.
    Feng H; Liang Y; Guo K; Li N; Shen D; Cong Y; Zhou Y; Wang Y; Wang M; Long Y
    Water Res; 2016 Oct; 102():428-435. PubMed ID: 27395027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.