These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 31891509)
1. Isolating Nanocrystals with an Individual Erbium Emitter: A Route to a Stable Single-Photon Source at 1550 nm Wavelength. Alizadehkhaledi A; Frencken AL; van Veggel FCJM; Gordon R Nano Lett; 2020 Feb; 20(2):1018-1022. PubMed ID: 31891509 [TBL] [Abstract][Full Text] [Related]
2. Isolating and enhancing single-photon emitters for 1550 nm quantum light sources using double nanohole optical tweezers. Sharifi Z; Dobinson M; Hajisalem G; Shariatdoust MS; Frencken AL; van Veggel FCJM; Gordon R J Chem Phys; 2021 May; 154(18):184204. PubMed ID: 34241038 [TBL] [Abstract][Full Text] [Related]
3. Single Photon Source from a Nanoantenna-Trapped Single Quantum Dot. Jiang Q; Roy P; Claude JB; Wenger J Nano Lett; 2021 Aug; 21(16):7030-7036. PubMed ID: 34398613 [TBL] [Abstract][Full Text] [Related]
4. Frequency Tunable, Cavity-Enhanced Single Erbium Quantum Emitter in the Telecom Band. Yu Y; Oser D; Da Prato G; Urbinati E; Ávila JC; Zhang Y; Remy P; Marzban S; Gröblacher S; Tittel W Phys Rev Lett; 2023 Oct; 131(17):170801. PubMed ID: 37955475 [TBL] [Abstract][Full Text] [Related]
5. Scalable and Deterministic Fabrication of Quantum Emitter Arrays from Hexagonal Boron Nitride. Li C; Mendelson N; Ritika R; Chen Y; Xu ZQ; Toth M; Aharonovich I Nano Lett; 2021 Apr; 21(8):3626-3632. PubMed ID: 33870699 [TBL] [Abstract][Full Text] [Related]
6. Coupling Single Photons from Discrete Quantum Emitters in WSe Blauth M; Jürgensen M; Vest G; Hartwig O; Prechtl M; Cerne J; Finley JJ; Kaniber M Nano Lett; 2018 Nov; 18(11):6812-6819. PubMed ID: 30153417 [TBL] [Abstract][Full Text] [Related]
7. Atomic Source of Single Photons in the Telecom Band. Dibos AM; Raha M; Phenicie CM; Thompson JD Phys Rev Lett; 2018 Jun; 120(24):243601. PubMed ID: 29956997 [TBL] [Abstract][Full Text] [Related]
8. Correction to "Isolating Nanocrystals with an Individual Erbium Emitter: A Route to a Stable Single-Photon Source at 1550 nm Wavelength". Alizadehkhaledi A; Frencken AL; van Veggel FCJM; Gordon R Nano Lett; 2020 Aug; 20(8):6222. PubMed ID: 32787189 [No Abstract] [Full Text] [Related]
9. Electrical tuning of quantum light emitters in hBN for free space and telecom optical bands. Dhu-Al Shaik AB; Palla P; Jenkins D Sci Rep; 2024 Jan; 14(1):811. PubMed ID: 38191916 [TBL] [Abstract][Full Text] [Related]
10. Deterministic coupling of quantum emitters in WSe Iff O; Lundt N; Betzold S; Tripathi LN; Emmerling M; Tongay S; Lee YJ; Kwon SH; Höfling S; Schneider C Opt Express; 2018 Oct; 26(20):25944-25951. PubMed ID: 30469688 [TBL] [Abstract][Full Text] [Related]
11. Fast electrical modulation of strong near-field interactions between erbium emitters and graphene. Cano D; Ferrier A; Soundarapandian K; Reserbat-Plantey A; Scarafagio M; Tallaire A; Seyeux A; Marcus P; Riedmatten H; Goldner P; Koppens FHL; Tielrooij KJ Nat Commun; 2020 Aug; 11(1):4094. PubMed ID: 32796825 [TBL] [Abstract][Full Text] [Related]
12. Experimental Demonstration of a Hybrid-Quantum-Emitter Producing Individual Entangled Photon Pairs in the Telecom Band. Chen G; Zou Y; Zhang WH; Zhang ZH; Zhou ZQ; He DY; Tang JS; Liu BH; Yu Y; Zha GW; Ni HQ; Niu ZC; Han YJ; Li CF; Guo GC Sci Rep; 2016 May; 6():26680. PubMed ID: 27225881 [TBL] [Abstract][Full Text] [Related]
13. Tunable Single-Photon Emission with Wafer-Scale Plasmonic Array. Chen CA; Chen PH; Zheng YX; Chen CH; Hsu MK; Hsu KC; Lai YY; Chuu CS; Deng H; Lee YH Nano Lett; 2024 Mar; 24(11):3395-3403. PubMed ID: 38359157 [TBL] [Abstract][Full Text] [Related]
14. Two-photon interference in the telecom C-band after frequency conversion of photons from remote quantum emitters. Weber JH; Kambs B; Kettler J; Kern S; Maisch J; Vural H; Jetter M; Portalupi SL; Becher C; Michler P Nat Nanotechnol; 2019 Jan; 14(1):23-26. PubMed ID: 30348956 [TBL] [Abstract][Full Text] [Related]
15. Spectral multiplexing of telecom emitters with stable transition frequency. Ulanowski A; Merkel B; Reiserer A Sci Adv; 2022 Oct; 8(43):eabo4538. PubMed ID: 36288302 [TBL] [Abstract][Full Text] [Related]
16. Purcell Enhancement of Erbium Ions in TiO Dibos AM; Solomon MT; Sullivan SE; Singh MK; Sautter KE; Horn CP; Grant GD; Lin Y; Wen J; Heremans FJ; Guha S; Awschalom DD Nano Lett; 2022 Aug; 22(16):6530-6536. PubMed ID: 35939762 [TBL] [Abstract][Full Text] [Related]
17. Hybrid plasmonic nano-emitters with controlled single quantum emitter positioning on the local excitation field. Ge D; Marguet S; Issa A; Jradi S; Nguyen TH; Nahra M; Béal J; Deturche R; Chen H; Blaize S; Plain J; Fiorini C; Douillard L; Soppera O; Dinh XQ; Dang C; Yang X; Xu T; Wei B; Sun XW; Couteau C; Bachelot R Nat Commun; 2020 Jul; 11(1):3414. PubMed ID: 32641727 [TBL] [Abstract][Full Text] [Related]
18. Integration of Single-Photon Emitters in 2D Materials with Plasmonic Waveguides at Room Temperature. Jeong KY; Lee SW; Choi JH; So JP; Park HG Nanomaterials (Basel); 2020 Aug; 10(9):. PubMed ID: 32854316 [TBL] [Abstract][Full Text] [Related]
19. Room temperature solid-state quantum emitters in the telecom range. Zhou Y; Wang Z; Rasmita A; Kim S; Berhane A; Bodrog Z; Adamo G; Gali A; Aharonovich I; Gao WB Sci Adv; 2018 Mar; 4(3):eaar3580. PubMed ID: 29670945 [TBL] [Abstract][Full Text] [Related]
20. Deterministic coupling of site-controlled quantum emitters in monolayer WSe Luo Y; Shepard GD; Ardelean JV; Rhodes DA; Kim B; Barmak K; Hone JC; Strauf S Nat Nanotechnol; 2018 Dec; 13(12):1137-1142. PubMed ID: 30374160 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]