These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 31891512)

  • 1. Slippery and Wear-Resistant Surfaces Enabled by Interface Engineered Graphene.
    Dwivedi N; Patra T; Lee JB; Yeo RJ; Srinivasan S; Dutta T; Sasikumar K; Dhand C; Tripathy S; Saifullah MSM; Danner A; Hashmi SAR; Srivastava AK; Ahn JH; Sankaranarayanan SKRS; Yang H; Bhatia CS
    Nano Lett; 2020 Feb; 20(2):905-917. PubMed ID: 31891512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Boosting contact sliding and wear protection via atomic intermixing and tailoring of nanoscale interfaces.
    Dwivedi N; Yeo RJ; Dhand C; Risan J; Nay R; Tripathy S; Rajauria S; Saifullah MSM; Sankaranarayanan SKRS; Yang H; Danner A; Bhatia CS
    Sci Adv; 2019 Jan; 5(1):eaau7886. PubMed ID: 30746462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suppressing Nanoscale Wear by Graphene/Graphene Interfacial Contact Architecture: A Molecular Dynamics Study.
    Xu Q; Li X; Zhang J; Hu Y; Wang H; Ma T
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40959-40968. PubMed ID: 29083163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomic Cross-Talk at the Interface: Enhanced Lubricity and Wear and Corrosion Resistance in Sub 2 nm Hybrid Overcoats via Strengthened Interface Chemistry.
    Kumar R; Bharti P; Sasikumar K; Dhand C; Kumar R; Kumar P; Sankaranarayanan SKRS; Dwivedi N
    Nano Lett; 2022 Dec; 22(24):9795-9804. PubMed ID: 36472414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mussel-Inspired Graphene Film with Enhanced Durability as a Macroscale Solid Lubricant.
    Chen S; Shen B; Zhang F; Hong H; Pan J
    ACS Appl Mater Interfaces; 2019 Aug; 11(34):31386-31392. PubMed ID: 31380618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superior wear resistance and low friction in hybrid ultrathin silicon nitride/carbon films: synergy of the interfacial chemistry and carbon microstructure.
    Yeo RJ; Dwivedi N; Zhang L; Zhang Z; Lim CYH; Tripathy S; Bhatia CS
    Nanoscale; 2017 Oct; 9(39):14937-14951. PubMed ID: 28952649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Friction. Macroscale superlubricity enabled by graphene nanoscroll formation.
    Berman D; Deshmukh SA; Sankaranarayanan SK; Erdemir A; Sumant AV
    Science; 2015 Jun; 348(6239):1118-22. PubMed ID: 25977372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Approaches for Achieving Superlubricity in Two-Dimensional Materials.
    Berman D; Erdemir A; Sumant AV
    ACS Nano; 2018 Mar; 12(3):2122-2137. PubMed ID: 29522673
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-dispersed crumpled graphene balls in oil for friction and wear reduction.
    Dou X; Koltonow AR; He X; Jang HD; Wang Q; Chung YW; Huang J
    Proc Natl Acad Sci U S A; 2016 Feb; 113(6):1528-33. PubMed ID: 26811466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Angstrom-Scale Transparent Overcoats: Interfacial Nitrogen-Driven Atomic Intermingling Promotes Lubricity and Surface Protection of Ultrathin Carbon.
    Dwivedi N; Neogi A; Patra TK; Dhand C; Dutta T; Yeo RJ; Kumar R; Hashmi SAR; Srivastava AK; Tripathy S; Saifullah MSM; Sankaranarayanan SKRS; Bhatia CS
    Nano Lett; 2021 Nov; 21(21):8960-8969. PubMed ID: 34714644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wear Resistance Limited by Step Edge Failure: The Rise and Fall of Graphene as an Atomically Thin Lubricating Material.
    Qi Y; Liu J; Zhang J; Dong Y; Li Q
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):1099-1106. PubMed ID: 28073278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of structure on the tribology of ultrathin graphene and graphene oxide films.
    Chen H; Filleter T
    Nanotechnology; 2015 Mar; 26(13):135702. PubMed ID: 25751675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graphene-Graphene Interactions: Friction, Superlubricity, and Exfoliation.
    Sinclair RC; Suter JL; Coveney PV
    Adv Mater; 2018 Mar; 30(13):e1705791. PubMed ID: 29436032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Friction Force Microscopy Analysis of Self-Adaptive W-S-C Coatings: Nanoscale Friction and Wear.
    Zekonyte J; Polcar T
    ACS Appl Mater Interfaces; 2015 Sep; 7(38):21056-64. PubMed ID: 26340161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superlubricity and Stress-Shielding of Graphene Enables Ultra Scratch-Resistant Glasses.
    Sahoo S; Khan Z; Mannan S; Tiwari U; Ye Z; Krishnan NMA; Gosvami NN
    ACS Appl Mater Interfaces; 2023 Oct; ():. PubMed ID: 37886825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sub-nano to nanometer wear and tribocorrosion of titanium oxide-metal surfaces by in situ atomic force microscopy.
    Liu Y; Zhu D; Gilbert JL
    Acta Biomater; 2021 May; 126():477-484. PubMed ID: 33812071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorinated Graphene: A Promising Macroscale Solid Lubricant under Various Environments.
    Liu Y; Li J; Chen X; Luo J
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):40470-40480. PubMed ID: 31577116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-Assembled Graphene Film as Low Friction Solid Lubricant in Macroscale Contact.
    Wu P; Li X; Zhang C; Chen X; Lin S; Sun H; Lin CT; Zhu H; Luo J
    ACS Appl Mater Interfaces; 2017 Jun; 9(25):21554-21562. PubMed ID: 28553709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Macroscale Superlubricity Enabled by Graphene-Coated Surfaces.
    Zhang Z; Du Y; Huang S; Meng F; Chen L; Xie W; Chang K; Zhang C; Lu Y; Lin CT; Li S; Parkin IP; Guo D
    Adv Sci (Weinh); 2020 Feb; 7(4):1903239. PubMed ID: 32099768
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generalized Scaling Law of Structural Superlubricity.
    Wang J; Cao W; Song Y; Qu C; Zheng Q; Ma M
    Nano Lett; 2019 Nov; 19(11):7735-7741. PubMed ID: 31646868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.