BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 31891809)

  • 21. Evidence for Adaptation to the Tibetan Plateau Inferred from Tibetan Loach Transcriptomes.
    Wang Y; Yang L; Zhou K; Zhang Y; Song Z; He S
    Genome Biol Evol; 2015 Oct; 7(11):2970-82. PubMed ID: 26454018
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comprehensive Transcriptome Analysis of Six Catfish Species from an Altitude Gradient Reveals Adaptive Evolution in Tibetan Fishes.
    Ma X; Dai W; Kang J; Yang L; He S
    G3 (Bethesda); 2015 Nov; 6(1):141-8. PubMed ID: 26564948
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hb adaptation to hypoxia in high-altitude fishes: Fresh evidence from schizothoracinae fishes in the Qinghai-Tibetan Plateau.
    Lei Y; Yang L; Zhou Y; Wang C; Lv W; Li L; He S
    Int J Biol Macromol; 2021 Aug; 185():471-484. PubMed ID: 34214574
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Local adaptation of Gymnocypris przewalskii (Cyprinidae) on the Tibetan Plateau.
    Zhang R; Ludwig A; Zhang C; Tong C; Li G; Tang Y; Peng Z; Zhao K
    Sci Rep; 2015 May; 5():9780. PubMed ID: 25944748
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genome Resequencing Identifies Unique Adaptations of Tibetan Chickens to Hypoxia and High-Dose Ultraviolet Radiation in High-Altitude Environments.
    Zhang Q; Gou W; Wang X; Zhang Y; Ma J; Zhang H; Zhang Y; Zhang H
    Genome Biol Evol; 2016 Feb; 8(3):765-76. PubMed ID: 26907498
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genomic Analysis Reveals Hypoxia Adaptation in the Tibetan Mastiff by Introgression of the Gray Wolf from the Tibetan Plateau.
    Miao B; Wang Z; Li Y
    Mol Biol Evol; 2017 Mar; 34(3):734-743. PubMed ID: 27927792
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis of hypoxia-inducible factor alpha polyploidization reveals adaptation to Tibetan Plateau in the evolution of schizothoracine fish.
    Guan L; Chi W; Xiao W; Chen L; He S
    BMC Evol Biol; 2014 Aug; 14():192. PubMed ID: 25205386
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular characterization and expression changes of cytoglobin genes in response to hypoxia in a Tibetan schizothoracine fish, Schizopygopsis pylzovi.
    Chao Y; Xia M; Wu R; Chen Q; Zheng Z; Qi D
    Fish Physiol Biochem; 2019 Jun; 45(3):863-872. PubMed ID: 30406573
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparative analyses reveal potential genetic mechanisms for high-altitude adaptation of Schizopygopsis fishes based on chromosome-level genomes.
    Zhou C; Wang X; Hu Z; Chen Q; Du C; Liu Y; Song Z
    J Hered; 2023 Nov; 114(6):654-668. PubMed ID: 37646645
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genomic and transcriptomic approaches to study immunology in cyprinids: What is next?
    Petit J; David L; Dirks R; Wiegertjes GF
    Dev Comp Immunol; 2017 Oct; 75():48-62. PubMed ID: 28257855
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Polyphyletic origins of schizothoracine fish (Cyprinidae, Osteichthyes) and adaptive evolution in their mitochondrial genomes.
    Yonezawa T; Hasegawa M; Zhong Y
    Genes Genet Syst; 2014; 89(4):187-91. PubMed ID: 25747043
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transcriptome analysis reveals molecular regulation mechanism of Tibet sheep tolerance to high altitude oxygen environment.
    An L; Li Y; Yaq L; Wang Y; Dai Q; Du S; Ru Y; Zhoucuo Q; Wang J
    Anim Biotechnol; 2023 Dec; 34(9):5097-5112. PubMed ID: 37729444
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparative transcriptomic analysis of Tibetan Gynaephora to explore the genetic basis of insect adaptation to divergent altitude environments.
    Zhang QL; Zhang L; Yang XZ; Wang XT; Li XP; Wang J; Chen JY; Yuan ML
    Sci Rep; 2017 Dec; 7(1):16972. PubMed ID: 29208990
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genomic Basis of Adaptive Evolution: The Survival of Amur Ide (Leuciscus waleckii) in an Extremely Alkaline Environment.
    Xu J; Li JT; Jiang Y; Peng W; Yao Z; Chen B; Jiang L; Feng J; Ji P; Liu G; Liu Z; Tai R; Dong C; Sun X; Zhao ZX; Zhang Y; Wang J; Li S; Zhao Y; Yang J; Sun X; Xu P
    Mol Biol Evol; 2017 Jan; 34(1):145-159. PubMed ID: 28007977
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transcriptome analysis reveals new insights into immune response to hypoxia challenge of large yellow croaker (Larimichthys crocea).
    Mu Y; Li W; Wu B; Chen J; Chen X
    Fish Shellfish Immunol; 2020 Mar; 98():738-747. PubMed ID: 31730929
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adaptive Evolution of the
    Zhang C; Tong C; Ludwig A; Tang Y; Liu S; Zhang R; Feng C; Li G; Peng Z; Zhao K
    Int J Mol Sci; 2018 Sep; 19(10):. PubMed ID: 30262767
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of two paralogous myostatin genes and evidence for positive selection in Tibet fish: Gymnocypris przewalskii.
    Tong C; Zhang C; Shi J; Qi H; Zhang R; Tang Y; Li G; Feng C; Zhao K
    Gene; 2015 Jul; 565(2):201-10. PubMed ID: 25861868
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Plateau Grass and Greenhouse Flower? Distinct Genetic Basis of Closely Related Toad Tadpoles Respectively Adapted to High Altitude and Karst Caves.
    Chang L; Zhu W; Shi S; Zhang M; Jiang J; Li C; Xie F; Wang B
    Genes (Basel); 2020 Jan; 11(2):. PubMed ID: 31979140
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transcriptome Analysis Provides Insights Into the Adaptive Responses to Hypoxia of a Schizothoracine Fish (
    Qi D; Chao Y; Wu R; Xia M; Chen Q; Zheng Z
    Front Physiol; 2018; 9():1326. PubMed ID: 30298021
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hypoxia-inducible factor 1α from a high-altitude fish enhances cytoprotection and elevates nitric oxide production in hypoxic environment.
    Wang C; Wu X; Hu X; Jiang H; Chen L; Xu Q
    Fish Physiol Biochem; 2020 Feb; 46(1):39-49. PubMed ID: 31595407
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.