BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

575 related articles for article (PubMed ID: 31891850)

  • 1. Bamboo - An untapped plant resource for the phytoremediation of heavy metal contaminated soils.
    Bian F; Zhong Z; Zhang X; Yang C; Gai X
    Chemosphere; 2020 May; 246():125750. PubMed ID: 31891850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phytoremediation potential of moso bamboo (Phyllostachys pubescens) intercropped with Sedum plumbizincicola in metal-contaminated soil.
    Bian F; Zhong Z; Zhang X; Yang C
    Environ Sci Pollut Res Int; 2017 Dec; 24(35):27244-27253. PubMed ID: 28965200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of heavy metal phytoremediation in monoculture and intercropping systems of Phyllostachys praecox and Sedum plumbizincicola in polluted soil.
    Bian F; Zhong Z; Wu S; Zhang X; Yang C; Xiong X
    Int J Phytoremediation; 2018 Apr; 20(5):490-498. PubMed ID: 28949764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A real filed phytoremediation of multi-metals contaminated soils by selected hybrid sweet sorghum with high biomass and high accumulation ability.
    Yuan X; Xiong T; Yao S; Liu C; Yin Y; Li H; Li N
    Chemosphere; 2019 Dec; 237():124536. PubMed ID: 31549653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of EDTA and citric acid on absorption of heavy metals and growth of Moso bamboo.
    Zhang X; Zhong B; Shafi M; Guo J; Liu C; Guo H; Peng D; Wang Y; Liu D
    Environ Sci Pollut Res Int; 2018 Jul; 25(19):18846-18852. PubMed ID: 29713981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of the phytoremediation efficiency of Ricinus communis L. and methane uptake from cadmium and nickel-contaminated soil using spent mushroom substrate.
    Sun Y; Wen C; Liang X; He C
    Environ Sci Pollut Res Int; 2018 Nov; 25(32):32603-32616. PubMed ID: 30242654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomass allocation strategies and Pb-enrichment characteristics of six dwarf bamboos under soil Pb stress.
    Cai X; Jiang M; Liao J; Yang Y; Li N; Cheng Q; Li X; Song H; Luo Z; Liu S
    Ecotoxicol Environ Saf; 2021 Jan; 207():111500. PubMed ID: 33254388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of biochar on growth, and heavy metals accumulation of moso bamboo (Phyllostachy pubescens), soil physical properties, and heavy metals solubility in soil.
    Wang Y; Zhong B; Shafi M; Ma J; Guo J; Wu J; Ye Z; Liu D; Jin H
    Chemosphere; 2019 Mar; 219():510-516. PubMed ID: 30553211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting?
    Rascio N; Navari-Izzo F
    Plant Sci; 2011 Feb; 180(2):169-81. PubMed ID: 21421358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Research progress in phytoremediation of heavy-metal contaminated soils with high-biomass economic plants].
    Jia W; Lü S; Lin K; Ma M; Wu S; Tang Y; Qiu R; Li Y
    Sheng Wu Gong Cheng Xue Bao; 2020 Mar; 36(3):416-425. PubMed ID: 32237536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phytoextraction of lead-contaminated soil using vetivergrass (Vetiveria zizanioides L.), cogongrass (Imperata cylindrica L.) and carabaograss (Paspalum conjugatum L.).
    Paz-Alberto AM; Sigua GC; Baui BG; Prudente JA
    Environ Sci Pollut Res Int; 2007 Nov; 14(7):498-504. PubMed ID: 18062482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accumulation and translocation of heavy metal by spontaneous plants growing on multi-metal-contaminated site in the Southeast of Rio Grande do Sul state, Brazil.
    Boechat CL; Pistóia VC; Gianelo C; Camargo FA
    Environ Sci Pollut Res Int; 2016 Feb; 23(3):2371-80. PubMed ID: 26411450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implications of metal accumulation mechanisms to phytoremediation.
    Memon AR; Schröder P
    Environ Sci Pollut Res Int; 2009 Mar; 16(2):162-75. PubMed ID: 19067014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Remediation of heavy metal contaminated soils by using Solanum nigrum: A review.
    Rehman MZU; Rizwan M; Ali S; Ok YS; Ishaque W; Saifullah ; Nawaz MF; Akmal F; Waqar M
    Ecotoxicol Environ Saf; 2017 Sep; 143():236-248. PubMed ID: 28551581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intercropping improves heavy metal phytoremediation efficiency through changing properties of rhizosphere soil in bamboo plantation.
    Bian F; Zhong Z; Li C; Zhang X; Gu L; Huang Z; Gai X; Huang Z
    J Hazard Mater; 2021 Aug; 416():125898. PubMed ID: 34492836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of phytoremediation capability of French marigold (
    Biswal B; Singh SK; Patra A; Mohapatra KK
    Int J Phytoremediation; 2022; 24(9):945-954. PubMed ID: 34634952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Promises and potential of
    Khan AG
    Int J Phytoremediation; 2020; 22(9):900-915. PubMed ID: 32538143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phytoremediation of Heavy Metal-Contaminated Soil by Switchgrass: A Comparative Study Utilizing Different Composts and Coir Fiber on Pollution Remediation, Plant Productivity, and Nutrient Leaching.
    Shrestha P; Bellitürk K; Görres JH
    Int J Environ Res Public Health; 2019 Apr; 16(7):. PubMed ID: 30970575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils.
    Ashraf S; Ali Q; Zahir ZA; Ashraf S; Asghar HN
    Ecotoxicol Environ Saf; 2019 Jun; 174():714-727. PubMed ID: 30878808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of heavy metal tolerance in native plant species from soils contaminated with electroplating effluent.
    Sainger PA; Dhankhar R; Sainger M; Kaushik A; Singh RP
    Ecotoxicol Environ Saf; 2011 Nov; 74(8):2284-91. PubMed ID: 21820739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.