These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 31891855)
1. Mechanistic evaluation of the exoelectrogenic activity of Rhodopseudomonas palustris under different nitrogen regimes. Pankan AO; Yunus K; Fisher AC Bioresour Technol; 2020 Mar; 300():122637. PubMed ID: 31891855 [TBL] [Abstract][Full Text] [Related]
2. Augmenting the biodegradation of recalcitrant ethinylestradiol using Rhodopseudomonas palustris in a hybrid photo-assisted microbial fuel cell with enhanced bio-hydrogen production. Sogani M; Pankan AO; Dongre A; Yunus K; Fisher AC J Hazard Mater; 2021 Apr; 408():124421. PubMed ID: 33199150 [TBL] [Abstract][Full Text] [Related]
3. Framework to improve biohydrogen generation with estrogen co-metabolism under complete suppression of nitrogen source. Syed Z; Sogani M; Sharma G; Sonu K; Rajvanshi J; Gupta NS Bioresour Technol; 2022 Sep; 360():127595. PubMed ID: 35803446 [TBL] [Abstract][Full Text] [Related]
4. Characterizing the Interplay of Rubisco and Nitrogenase Enzymes in Anaerobic-Photoheterotrophically Grown Rhodopseudomonas palustris CGA009 through a Genome-Scale Metabolic and Expression Model. Chowdhury NB; Alsiyabi A; Saha R Microbiol Spectr; 2022 Aug; 10(4):e0146322. PubMed ID: 35730964 [TBL] [Abstract][Full Text] [Related]
5. Electricity generation by Rhodopseudomonas palustris DX-1. Xing D; Zuo Y; Cheng S; Regan JM; Logan BE Environ Sci Technol; 2008 Jun; 42(11):4146-51. PubMed ID: 18589979 [TBL] [Abstract][Full Text] [Related]
6. Overview of electroactive microorganisms and electron transfer mechanisms in microbial electrochemistry. Thapa BS; Kim T; Pandit S; Song YE; Afsharian YP; Rahimnejad M; Kim JR; Oh SE Bioresour Technol; 2022 Mar; 347():126579. PubMed ID: 34921921 [TBL] [Abstract][Full Text] [Related]
7. [Progress in enhancing electron transfer rate between exoelectrogenic microorganisms and electrode interface]. Liu X; Zhang J; Zhang B; Yang C; Li F; Song H Sheng Wu Gong Cheng Xue Bao; 2021 Feb; 37(2):361-377. PubMed ID: 33645140 [TBL] [Abstract][Full Text] [Related]
8. Polyphosphate metabolism by purple non-sulfur bacteria and its possible application on photo-microbial fuel cell. Lai YC; Liang CM; Hsu SC; Hsieh PH; Hung CH J Biosci Bioeng; 2017 Jun; 123(6):722-730. PubMed ID: 28291662 [TBL] [Abstract][Full Text] [Related]
9. System-level analysis of metabolic trade-offs during anaerobic photoheterotrophic growth in Rhodopseudomonas palustris. Navid A; Jiao Y; Wong SE; Pett-Ridge J BMC Bioinformatics; 2019 May; 20(1):233. PubMed ID: 31072303 [TBL] [Abstract][Full Text] [Related]
10. n-Butanol production by Rhodopseudomonas palustris TIE-1. Bai W; Ranaivoarisoa TO; Singh R; Rengasamy K; Bose A Commun Biol; 2021 Nov; 4(1):1257. PubMed ID: 34732832 [TBL] [Abstract][Full Text] [Related]
11. Transcriptomic Responses of the Interactions between Clostridium cellulovorans 743B and Rhodopseudomonas palustris CGA009 in a Cellulose-Grown Coculture for Enhanced Hydrogen Production. Lu H; Chen J; Jia Y; Cai M; Lee PKH Appl Environ Microbiol; 2016 Aug; 82(15):4546-4559. PubMed ID: 27208134 [TBL] [Abstract][Full Text] [Related]
12. Biohydrogen production from CO-rich syngas via a locally isolated Rhodopseudomonas palustris PT. Pakpour F; Najafpour G; Tabatabaei M; Tohidfar M; Younesi H Bioprocess Biosyst Eng; 2014 May; 37(5):923-30. PubMed ID: 24078148 [TBL] [Abstract][Full Text] [Related]
13. A high-throughput dye-reducing photometric assay for evaluating microbial exoelectrogenic ability. Xiao X; Liu QY; Li TT; Zhang F; Li WW; Zhou XT; Xu MY; Li Q; Yu HQ Bioresour Technol; 2017 Oct; 241():743-749. PubMed ID: 28628978 [TBL] [Abstract][Full Text] [Related]
14. The effect of light emission spectrum on biohydrogen production by Rhodopseudomonas palustris. Bosman CE; Pott RWM; Bradshaw SM Bioprocess Biosyst Eng; 2023 Jun; 46(6):913-919. PubMed ID: 36973588 [TBL] [Abstract][Full Text] [Related]
15. Production of hydrogen gas from light and the inorganic electron donor thiosulfate by Rhodopseudomonas palustris. Huang JJ; Heiniger EK; McKinlay JB; Harwood CS Appl Environ Microbiol; 2010 Dec; 76(23):7717-22. PubMed ID: 20889777 [TBL] [Abstract][Full Text] [Related]
16. Resilience, Dynamics, and Interactions within a Model Multispecies Exoelectrogenic-Biofilm Community. Prokhorova A; Sturm-Richter K; Doetsch A; Gescher J Appl Environ Microbiol; 2017 Mar; 83(6):. PubMed ID: 28087529 [TBL] [Abstract][Full Text] [Related]
17. Effect of electrode potentials on the microbial community of photo bioelectrochemical systems. Wu Y; Zheng Y; Xiao Y; Wang Z; Zhao F World J Microbiol Biotechnol; 2017 Jul; 33(7):149. PubMed ID: 28638986 [TBL] [Abstract][Full Text] [Related]
18. Biotransformation of water lettuce (Pistia stratiotes) to biohydrogen by Rhodopseudomonas palustris. Corneli E; Adessi A; Olguín EJ; Ragaglini G; García-López DA; De Philippis R J Appl Microbiol; 2017 Dec; 123(6):1438-1446. PubMed ID: 28972701 [TBL] [Abstract][Full Text] [Related]
19. An insoluble iron complex coated cathode enhances direct electron uptake by Rhodopseudomonas palustris TIE-1. Rengasamy K; Ranaivoarisoa T; Singh R; Bose A Bioelectrochemistry; 2018 Aug; 122():164-173. PubMed ID: 29655035 [TBL] [Abstract][Full Text] [Related]
20. An Escherichia coli Nitrogen Starvation Response Is Important for Mutualistic Coexistence with Rhodopseudomonas palustris. McCully AL; Behringer MG; Gliessman JR; Pilipenko EV; Mazny JL; Lynch M; Drummond DA; McKinlay JB Appl Environ Microbiol; 2018 Jul; 84(14):. PubMed ID: 29728387 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]