These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

420 related articles for article (PubMed ID: 31891869)

  • 21. From Exosomes to Circulating Tumor Cells: Using Microfluidics to Detect High Predictive Cancer Biomarkers.
    Abreu CM; Caballero D; Kundu SC; Reis RL
    Adv Exp Med Biol; 2022; 1379():369-387. PubMed ID: 35761000
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Emerging Microfluidic Tools for Simultaneous Exosomes and Cargo Biosensing in Liquid Biopsy: New Integrated Miniaturized FFF-Assisted Approach for Colon Cancer Diagnosis.
    Marassi V; Giordani S; Placci A; Punzo A; Caliceti C; Zattoni A; Reschiglian P; Roda B; Roda A
    Sensors (Basel); 2023 Nov; 23(23):. PubMed ID: 38067805
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Liquid Biopsy: General Concepts.
    Poulet G; Massias J; Taly V
    Acta Cytol; 2019; 63(6):449-455. PubMed ID: 31091522
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Clinical application of a microfluidic chip for immunocapture and quantification of circulating exosomes to assist breast cancer diagnosis and molecular classification.
    Fang S; Tian H; Li X; Jin D; Li X; Kong J; Yang C; Yang X; Lu Y; Luo Y; Lin B; Niu W; Liu T
    PLoS One; 2017; 12(4):e0175050. PubMed ID: 28369094
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Capturing and Clinical Applications of Circulating Tumor Cells with Wave Microfluidic Chip.
    Chen H
    Appl Biochem Biotechnol; 2020 Apr; 190(4):1470-1483. PubMed ID: 31782091
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Advances in microfluidic extracellular vesicle analysis for cancer diagnostics.
    Cheng S; Li Y; Yan H; Wen Y; Zhou X; Friedman L; Zeng Y
    Lab Chip; 2021 Sep; 21(17):3219-3243. PubMed ID: 34352059
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Applications of microfluidics for molecular diagnostics.
    Jayamohan H; Sant HJ; Gale BK
    Methods Mol Biol; 2013; 949():305-34. PubMed ID: 23329451
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A survey of electrokinetically-driven microfluidics for cancer cells manipulation.
    Romero-Soto FO; Polanco-Oliva MI; Gallo-Villanueva RC; Martinez-Chapa SO; Perez-Gonzalez VH
    Electrophoresis; 2021 Mar; 42(5):605-625. PubMed ID: 33188536
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Exosome isolation using nanostructures and microfluidic devices.
    Le MN; Fan ZH
    Biomed Mater; 2021 Feb; 16(2):022005. PubMed ID: 33477118
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microfluidic-integrated DNA nanobiosensors.
    Ansari MIH; Hassan S; Qurashi A; Khanday FA
    Biosens Bioelectron; 2016 Nov; 85():247-260. PubMed ID: 27179566
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microfluidic biosensing of circulating tumor cells (CTCs): Recent progress and challenges in efficient diagnosis of cancer.
    Farshchi F; Hasanzadeh M
    Biomed Pharmacother; 2021 Feb; 134():111153. PubMed ID: 33360045
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Circulating tumor DNA and liquid biopsy: opportunities, challenges, and recent advances in detection technologies.
    Gorgannezhad L; Umer M; Islam MN; Nguyen NT; Shiddiky MJA
    Lab Chip; 2018 Apr; 18(8):1174-1196. PubMed ID: 29569666
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microfluidic Devices for Circulating Tumor Cells Isolation and Subsequent Analysis.
    Khamenehfar A; Li PC
    Curr Pharm Biotechnol; 2016; 17(9):810-21. PubMed ID: 26927214
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Shifting paradigm of cancer diagnoses in clinically relevant samples based on miniaturized electrochemical nanobiosensors and microfluidic devices.
    Mahato K; Kumar A; Maurya PK; Chandra P
    Biosens Bioelectron; 2018 Feb; 100():411-428. PubMed ID: 28957706
    [TBL] [Abstract][Full Text] [Related]  

  • 35. DNA fragment-assisted microfluidic chip for capture and release of circulating tumor cells.
    Chen D; Wen J; Zeng S; Ma H
    Electrophoresis; 2019 Nov; 40(21):2845-2852. PubMed ID: 31267582
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microfluidic devices for glycobiomarker detection in cancer.
    Silva MLS
    Clin Chim Acta; 2021 Oct; 521():229-243. PubMed ID: 34273337
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Microfluidic Approach for Enrichment and Single-Cell Characterization of Circulating Tumor Cells from Peripheral Blood.
    Radfar P; Ding L; Es HA; Warkiani ME
    Methods Mol Biol; 2023; 2679():141-150. PubMed ID: 37300613
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prospectives and retrospectives of microfluidics devices and lab-on-A-chip emphasis on cancer.
    Venkatesalu S; Dilliyappan S; Satish Kumar A; Palaniyandi T; Baskar G; Ravi M; Sivaji A
    Clin Chim Acta; 2024 Jan; 552():117646. PubMed ID: 38000458
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Liquid biopsy and PCR-free ultrasensitive detection systems in oncology (Review).
    Finotti A; Allegretti M; Gasparello J; Giacomini P; Spandidos DA; Spoto G; Gambari R
    Int J Oncol; 2018 Oct; 53(4):1395-1434. PubMed ID: 30085333
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microfluidics-Based Urine Biopsy for Cancer Diagnosis: Recent Advances and Future Trends.
    Wang Y; Gao Y; Song Y
    ChemMedChem; 2022 Oct; 17(20):e202200422. PubMed ID: 36040297
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.