These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 31891917)

  • 1. Germanium tin alloy nanowires as anode materials for high performance Li-ion batteries.
    Doherty J; McNulty D; Biswas S; Moore K; Conroy M; Bangert U; O'Dwyer C; Holmes JD
    Nanotechnology; 2020 Apr; 31(16):165402. PubMed ID: 31891917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybrid tin oxide nanowires as stable and high capacity anodes for Li-ion batteries.
    Meduri P; Pendyala C; Kumar V; Sumanasekera GU; Sunkara MK
    Nano Lett; 2009 Feb; 9(2):612-6. PubMed ID: 19159325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ionic liquid electrodeposition of strain-released Germanium nanowires as stable anodes for lithium ion batteries.
    Hao J; Yang Y; Zhao J; Liu X; Endres F; Chi C; Wang B; Liu X; Li Y
    Nanoscale; 2017 Jun; 9(24):8481-8488. PubMed ID: 28604881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alkanethiol-passivated ge nanowires as high-performance anode materials for lithium-ion batteries: the role of chemical surface functionalization.
    Yuan FW; Yang HJ; Tuan HY
    ACS Nano; 2012 Nov; 6(11):9932-42. PubMed ID: 23043347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-Step Grown Carbonaceous Germanium Nanowires and Their Application as Highly Efficient Lithium-Ion Battery Anodes.
    Garcia A; Biswas S; McNulty D; Roy A; Raha S; Trabesinger S; Nicolosi V; Singha A; Holmes JD
    ACS Appl Energy Mater; 2022 Feb; 5(2):1922-1932. PubMed ID: 35252775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Behavior of Germanium and Silicon Nanowire Anodes with Ionic Liquid Electrolytes.
    Kim GT; Kennedy T; Brandon M; Geaney H; Ryan KM; Passerini S; Appetecchi GB
    ACS Nano; 2017 Jun; 11(6):5933-5943. PubMed ID: 28530820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanowire Heterostructures Comprising Germanium Stems and Silicon Branches as High-Capacity Li-Ion Anodes with Tunable Rate Capability.
    Kennedy T; Bezuidenhout M; Palaniappan K; Stokes K; Brandon M; Ryan KM
    ACS Nano; 2015 Jul; 9(7):7456-65. PubMed ID: 26125966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoporous Tin with a Granular Hierarchical Ligament Morphology as a Highly Stable Li-Ion Battery Anode.
    Cook JB; Detsi E; Liu Y; Liang YL; Kim HS; Petrissans X; Dunn B; Tolbert SH
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):293-303. PubMed ID: 28005328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Germanium Nanowires via Molten-Salt Electrolysis for Lithium Battery Anode.
    Liu H; Wu T; Zhang L; Wang X; Li H; Liu S; Zhang Q; Zhang X; Yu H
    ACS Nano; 2022 Sep; 16(9):14402-14411. PubMed ID: 36053270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Au-Sn Catalyzed Growth of Ge
    Sun YL; Matsumura R; Jevasuwan W; Fukata N
    Nano Lett; 2019 Sep; 19(9):6270-6277. PubMed ID: 31448621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ge/C nanowires as high-capacity and long-life anode materials for Li-ion batteries.
    Liu J; Song K; Zhu C; Chen CC; van Aken PA; Maier J; Yu Y
    ACS Nano; 2014 Jul; 8(7):7051-9. PubMed ID: 24940842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zn2SnO4 nanowires versus nanoplates: electrochemical performance and morphological evolution during Li-cycling.
    Cherian CT; Zheng M; Reddy MV; Chowdari BV; Sow CH
    ACS Appl Mater Interfaces; 2013 Jul; 5(13):6054-60. PubMed ID: 23738585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Colloidal tin-germanium nanorods and their Li-ion storage properties.
    Bodnarchuk MI; Kravchyk KV; Krumeich F; Wang S; Kovalenko MV
    ACS Nano; 2014 Mar; 8(3):2360-8. PubMed ID: 24483276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Template-free electrodeposition of AlFe alloy nanowires from a room-temperature ionic liquid as an anode material for Li-ion batteries.
    Chen G; Chen Y; Guo Q; Wang H; Li B
    Faraday Discuss; 2016 Aug; 190():97-108. PubMed ID: 27200436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advances in the Application of Silicon and Germanium Nanowires for High-Performance Lithium-Ion Batteries.
    Kennedy T; Brandon M; Ryan KM
    Adv Mater; 2016 Jul; 28(27):5696-704. PubMed ID: 26855084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sn-induced low-temperature growth of Ge nanowire electrodes with a large lithium storage capacity.
    Ko YD; Kang JG; Lee GH; Park JG; Park KS; Jin YH; Kim DW
    Nanoscale; 2011 Aug; 3(8):3371-5. PubMed ID: 21750788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Germanium-tin alloy nanocrystals for high-performance lithium ion batteries.
    Cho YJ; Kim CH; Im HS; Myung Y; Kim HS; Back SH; Lim YR; Jung CS; Jang DM; Park J; Lim SH; Cha EH; Bae KY; Song MS; Cho WI
    Phys Chem Chem Phys; 2013 Jul; 15(28):11691-5. PubMed ID: 23753000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct Growth of Si, Ge, and Si-Ge Heterostructure Nanowires Using Electroplated Zn: An Inexpensive Seeding Technique for Li-Ion Alloying Anodes.
    Kilian S; McCarthy K; Stokes K; Adegoke TE; Conroy M; Amiinu IS; Geaney H; Kennedy T; Ryan KM
    Small; 2021 Mar; 17(10):e2005443. PubMed ID: 33475259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalyst engineering for lithium ion batteries: the catalytic role of Ge in enhancing the electrochemical performance of SnO2(GeO2)0.13/G anodes.
    Zhu YG; Wang Y; Han ZJ; Shi Y; Wong JI; Huang ZX; Ostrikov KK; Yang HY
    Nanoscale; 2014 Dec; 6(24):15020-8. PubMed ID: 25367289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stretching the Equilibrium Limit of Sn in Ge
    Biswas S; Doherty J; Galluccio E; Manning HG; Conroy M; Duffy R; Bangert U; Boland JJ; Holmes JD
    ACS Appl Nano Mater; 2021 Feb; 4(2):1048-1056. PubMed ID: 34056558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.