BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

440 related articles for article (PubMed ID: 31891921)

  • 1. Reliable anatase-titania nanoclusters functionalized GaN sensor devices for UV assisted NO
    Khan MAH; Thomson B; Debnath R; Rani A; Motayed A; Rao MV
    Nanotechnology; 2020 Apr; 31(15):155504. PubMed ID: 31891921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gallium Nitride (GaN) Nanostructures and Their Gas Sensing Properties: A Review.
    Khan MAH; Rao MV
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32668634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proliferation of the Light and Gas Interaction with GaN Nanorods Grown on a V-Grooved Si(111) Substrate for UV Photodetector and NO
    Reddeppa M; Nam DJ; Bak NH; Pasupuleti KS; Woo H; Kim SG; Oh JE; Kim MD
    ACS Appl Mater Interfaces; 2021 Jun; 13(25):30146-30154. PubMed ID: 34143594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methanol, ethanol and hydrogen sensing using metal oxide and metal (TiO(2)-Pt) composite nanoclusters on GaN nanowires: a new route towards tailoring the selectivity of nanowire/nanocluster chemical sensors.
    Aluri GS; Motayed A; Davydov AV; Oleshko VP; Bertness KA; Sanford NA; Mulpuri RV
    Nanotechnology; 2012 May; 23(17):175501. PubMed ID: 22481611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tailoring and functionalizing the graphitic-like GaN and GaP nanostructures as selective sensors for NO, NO
    Mollaamin F; Monajjemi M
    J Mol Model; 2023 May; 29(6):170. PubMed ID: 37148380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Back-Gate GaN Nanowire-Based FET Device for Enhancing Gas Selectivity at Room Temperature.
    Khan MAH; Debnath R; Motayed A; Rao MV
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33477377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly selective GaN-nanowire/TiO2-nanocluster hybrid sensors for detection of benzene and related environment pollutants.
    Aluri GS; Motayed A; Davydov AV; Oleshko VP; Bertness KA; Sanford NA; Rao MV
    Nanotechnology; 2011 Jul; 22(29):295503. PubMed ID: 21673385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anatase porous titania nanosheets for resonant-gravimetric detection of ppb-level NO
    Yang J; Wang D; Li M; Yu H; Xu P; Li X
    Analyst; 2021 Jun; 146(12):4042-4048. PubMed ID: 34047323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly sensitive NO
    Yang Z; Su C; Wang S; Han Y; Chen X; Xu S; Zhou Z; Hu N; Su Y; Zeng M
    Nanotechnology; 2020 Feb; 31(7):075501. PubMed ID: 31661676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel low-temperature resistive NO gas sensor based on InGaN/GaN multi-quantum well-embedded p-i-n GaN nanorods.
    Reddeppa M; Park BG; Chinh ND; Kim D; Oh JE; Kim TG; Kim MD
    Dalton Trans; 2019 Jan; 48(4):1367-1375. PubMed ID: 30608090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Parts Per Billion (ppb) Sensor for NO
    Casals O; Markiewicz N; Fabrega C; Gràcia I; Cané C; Wasisto HS; Waag A; Prades JD
    ACS Sens; 2019 Apr; 4(4):822-826. PubMed ID: 30758185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light enhanced room temperature resistive NO
    Chen Y; Zhang X; Liu Z; Zeng Z; Zhao H; Wang X; Xu J
    Mikrochim Acta; 2019 Jan; 186(1):47. PubMed ID: 30610459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasensitive Room-Temperature NO
    Saggu IS; Singh S; Chen K; Xuan Z; Swihart MT; Sharma S
    ACS Sens; 2023 Jan; 8(1):243-253. PubMed ID: 36647806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel Operation Strategy to Obtain a Fast Gas Sensor for Continuous ppb-Level NO
    Wagner R; Schönauer-Kamin D; Moos R
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31547526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High performance langasite based SAW NO
    Pasupuleti KS; Reddeppa M; Chougule SS; Bak NH; Nam DJ; Jung N; Cho HD; Kim SG; Kim MD
    J Hazard Mater; 2022 Apr; 427():128174. PubMed ID: 34995998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-Dimensional Assemblies of Edge-Enriched WSe
    Alagh A; Annanouch FE; Sierra-Castillo A; Haye E; Colomer JF; Llobet E
    ACS Appl Mater Interfaces; 2022 Dec; 14(49):54946-54960. PubMed ID: 36469520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Eco-Friendly Disposable WS
    Matatagui D; Cruz C; Carrascoso F; Al-Enizi AM; Nafady A; Castellanos-Gomez A; Horrillo MDC
    Nanomaterials (Basel); 2022 Apr; 12(7):. PubMed ID: 35407331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Performance Atomically-Thin Room-Temperature NO
    Azizi A; Dogan M; Long H; Cain JD; Lee K; Eskandari R; Varieschi A; Glazer EC; Cohen ML; Zettl A
    Nano Lett; 2020 Aug; 20(8):6120-6127. PubMed ID: 32680428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasensitive and reversible NO
    Bharathi P; Harish S; Shimomura M; Mohan MK; Archana J; Navaneethan M
    Chemosphere; 2024 Jan; 346():140486. PubMed ID: 37875216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased Active Sites and Charge Transfer in the SnS
    Sun Q; Li Y; Hao J; Zheng S; Zhang T; Wang T; Wu R; Fang H; Wang Y
    ACS Appl Mater Interfaces; 2021 Nov; 13(45):54152-54161. PubMed ID: 34734688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.