These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
416 related articles for article (PubMed ID: 31892085)
1. A single cell droplet microfluidic system for quantitative determination of food-borne pathogens. An X; Zuo P; Ye BC Talanta; 2020 Mar; 209():120571. PubMed ID: 31892085 [TBL] [Abstract][Full Text] [Related]
2. Micro-nano-bio acoustic system for the detection of foodborne pathogens in real samples. Papadakis G; Murasova P; Hamiot A; Tsougeni K; Kaprou G; Eck M; Rabus D; Bilkova Z; Dupuy B; Jobst G; Tserepi A; Gogolides E; Gizeli E Biosens Bioelectron; 2018 Jul; 111():52-58. PubMed ID: 29635118 [TBL] [Abstract][Full Text] [Related]
3. A microfluidic nano-biosensor for the detection of pathogenic Salmonella. Kim G; Moon JH; Moh CY; Lim JG Biosens Bioelectron; 2015 May; 67():243-7. PubMed ID: 25172028 [TBL] [Abstract][Full Text] [Related]
4. A microdevice for rapid, monoplex and colorimetric detection of foodborne pathogens using a centrifugal microfluidic platform. Sayad A; Ibrahim F; Mukim Uddin S; Cho J; Madou M; Thong KL Biosens Bioelectron; 2018 Feb; 100():96-104. PubMed ID: 28869845 [TBL] [Abstract][Full Text] [Related]
5. Single-pipetting microfluidic assay device for rapid detection of Salmonella from poultry package. Fronczek CF; You DJ; Yoon JY Biosens Bioelectron; 2013 Feb; 40(1):342-9. PubMed ID: 22939509 [TBL] [Abstract][Full Text] [Related]
6. Label-free screening of foodborne Salmonella using surface plasmon resonance imaging. Chen J; Park B Anal Bioanal Chem; 2018 Sep; 410(22):5455-5464. PubMed ID: 29279985 [TBL] [Abstract][Full Text] [Related]
7. A microfluidic biosensor for online and sensitive detection of Salmonella typhimurium using fluorescence labeling and smartphone video processing. Wang S; Zheng L; Cai G; Liu N; Liao M; Li Y; Zhang X; Lin J Biosens Bioelectron; 2019 Sep; 140():111333. PubMed ID: 31153017 [TBL] [Abstract][Full Text] [Related]
8. All-carbon suspended nanowire sensors as a rapid highly-sensitive label-free chemiresistive biosensing platform. Thiha A; Ibrahim F; Muniandy S; Dinshaw IJ; Teh SJ; Thong KL; Leo BF; Madou M Biosens Bioelectron; 2018 Jun; 107():145-152. PubMed ID: 29455024 [TBL] [Abstract][Full Text] [Related]
9. Combination of dynamic magnetophoretic separation and stationary magnetic trap for highly sensitive and selective detection of Salmonella typhimurium in complex matrix. Guo PL; Tang M; Hong SL; Yu X; Pang DW; Zhang ZL Biosens Bioelectron; 2015 Dec; 74():628-36. PubMed ID: 26201979 [TBL] [Abstract][Full Text] [Related]
10. An ultrasensitive biosensor for fast detection of Salmonella using 3D magnetic grid separation and urease catalysis. Hou Y; Tang W; Qi W; Guo X; Lin J Biosens Bioelectron; 2020 Jun; 157():112160. PubMed ID: 32250940 [TBL] [Abstract][Full Text] [Related]
11. A microfluidic based biosensor for rapid detection of Salmonella in food products. Liu J; Jasim I; Shen Z; Zhao L; Dweik M; Zhang S; Almasri M PLoS One; 2019; 14(5):e0216873. PubMed ID: 31086396 [TBL] [Abstract][Full Text] [Related]
12. Rapid detection of Salmonella in milk by electrochemical magneto-immunosensing. Liébana S; Lermo A; Campoy S; Cortés MP; Alegret S; Pividori MI Biosens Bioelectron; 2009 Oct; 25(2):510-3. PubMed ID: 19716286 [TBL] [Abstract][Full Text] [Related]
13. Pathogenic Bacteria Detection Using RNA-Based Loop-Mediated Isothermal-Amplification-Assisted Nucleic Acid Amplification via Droplet Microfluidics. Azizi M; Zaferani M; Cheong SH; Abbaspourrad A ACS Sens; 2019 Apr; 4(4):841-848. PubMed ID: 30908029 [TBL] [Abstract][Full Text] [Related]
14. Lab-On-a-Chip for carbon nanotubes based immunoassay detection of Staphylococcal Enterotoxin B (SEB). Yang M; Sun S; Kostov Y; Rasooly A Lab Chip; 2010 Apr; 10(8):1011-7. PubMed ID: 20358108 [TBL] [Abstract][Full Text] [Related]
16. An integrated rotary microfluidic system with DNA extraction, loop-mediated isothermal amplification, and lateral flow strip based detection for point-of-care pathogen diagnostics. Park BH; Oh SJ; Jung JH; Choi G; Seo JH; Kim DH; Lee EY; Seo TS Biosens Bioelectron; 2017 May; 91():334-340. PubMed ID: 28043075 [TBL] [Abstract][Full Text] [Related]
17. Low-fouling surface plasmon resonance biosensor for multi-step detection of foodborne bacterial pathogens in complex food samples. Vaisocherová-Lísalová H; Víšová I; Ermini ML; Špringer T; Song XC; Mrázek J; Lamačová J; Scott Lynn N; Šedivák P; Homola J Biosens Bioelectron; 2016 Jun; 80():84-90. PubMed ID: 26807521 [TBL] [Abstract][Full Text] [Related]
18. Fully integrated and slidable paper-embedded plastic microdevice for point-of-care testing of multiple foodborne pathogens. Trinh KTL; Trinh TND; Lee NY Biosens Bioelectron; 2019 Jun; 135():120-128. PubMed ID: 31004922 [TBL] [Abstract][Full Text] [Related]
19. Development of antibody array for simultaneous detection of foodborne pathogens. Karoonuthaisiri N; Charlermroj R; Uawisetwathana U; Luxananil P; Kirtikara K; Gajanandana O Biosens Bioelectron; 2009 Feb; 24(6):1641-8. PubMed ID: 18829295 [TBL] [Abstract][Full Text] [Related]
20. Recent sensing technologies for pathogen detection in milk: a review. Mortari A; Lorenzelli L Biosens Bioelectron; 2014 Oct; 60():8-21. PubMed ID: 24768759 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]