These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 31892197)

  • 1. Temporal Limitations of the Standard Leaky Integrate and Fire Model.
    Merzon L; Malevich T; Zhulikov G; Krasovskaya S; MacInnes WJ
    Brain Sci; 2019 Dec; 10(1):. PubMed ID: 31892197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Salience Models: A Computational Cognitive Neuroscience Review.
    Krasovskaya S; MacInnes WJ
    Vision (Basel); 2019 Oct; 3(4):. PubMed ID: 31735857
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Generative Model of Cognitive State from Task and Eye Movements.
    MacInnes WJ; Hunt AR; Clarke ADF; Dodd MD
    Cognit Comput; 2018 Oct; 10(5):703-717. PubMed ID: 30740186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predictive saccade target selection in superior colliculus during visual search.
    Shen K; Paré M
    J Neurosci; 2014 Apr; 34(16):5640-8. PubMed ID: 24741054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oculomotor behavior during non-visual tasks: The role of visual saliency.
    Abeles D; Amit R; Yuval-Greenberg S
    PLoS One; 2018; 13(6):e0198242. PubMed ID: 29933381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spike train probability models for stimulus-driven leaky integrate-and-fire neurons.
    Koyama S; Kass RE
    Neural Comput; 2008 Jul; 20(7):1776-95. PubMed ID: 18336078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A simple neuronal model with intrinsic saturation of the firing frequency.
    Tomar R; Smith CE; Lansky P
    Biosystems; 2022 Dec; 222():104780. PubMed ID: 36179938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Saccadic reaction time in the monkey: advanced preparation of oculomotor programs is primarily responsible for express saccade occurrence.
    Paré M; Munoz DP
    J Neurophysiol; 1996 Dec; 76(6):3666-81. PubMed ID: 8985865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A neural network implementation of a saliency map model.
    de Brecht M; Saiki J
    Neural Netw; 2006 Dec; 19(10):1467-74. PubMed ID: 16687235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconstruction of the input signal of the leaky integrate-and-fire neuronal model from its interspike intervals.
    Seydnejad SR
    Biol Cybern; 2016 Feb; 110(1):3-15. PubMed ID: 26658736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computing the Local Field Potential (LFP) from Integrate-and-Fire Network Models.
    Mazzoni A; Lindén H; Cuntz H; Lansner A; Panzeri S; Einevoll GT
    PLoS Comput Biol; 2015 Dec; 11(12):e1004584. PubMed ID: 26657024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tailoring inputs to achieve maximal neuronal firing.
    Wang J; Costello W; Rubin JE
    J Math Neurosci; 2011 May; 1(1):3. PubMed ID: 22656323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Top-down but not bottom-up visual scanning is affected in hereditary pure cerebellar ataxia.
    Matsuda S; Matsumoto H; Furubayashi T; Fukuda H; Emoto M; Hanajima R; Tsuji S; Ugawa Y; Terao Y
    PLoS One; 2014; 9(12):e116181. PubMed ID: 25545148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Where did I come from? Where am I going? Functional differences in visual search fixation duration.
    Greene HH; Brown JM
    J Eye Mov Res; 2017 Mar; 10(1):. PubMed ID: 33828646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ICAT: a computational model for the adaptive control of fixation durations.
    Trukenbrod HA; Engbert R
    Psychon Bull Rev; 2014 Aug; 21(4):907-34. PubMed ID: 24470305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. LIAF-Net: Leaky Integrate and Analog Fire Network for Lightweight and Efficient Spatiotemporal Information Processing.
    Wu Z; Zhang H; Lin Y; Li G; Wang M; Tang Y
    IEEE Trans Neural Netw Learn Syst; 2022 Nov; 33(11):6249-6262. PubMed ID: 33979292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting Eye Fixations on Complex Visual Stimuli Using Local Symmetry.
    Kootstra G; de Boer B; Schomaker LR
    Cognit Comput; 2011 Mar; 3(1):223-240. PubMed ID: 21475690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Look twice: A generalist computational model predicts return fixations across tasks and species.
    Zhang M; Armendariz M; Xiao W; Rose O; Bendtz K; Livingstone M; Ponce C; Kreiman G
    PLoS Comput Biol; 2022 Nov; 18(11):e1010654. PubMed ID: 36413523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interspike interval correlations, memory, adaptation, and refractoriness in a leaky integrate-and-fire model with threshold fatigue.
    Chacron MJ; Pakdaman K; Longtin A
    Neural Comput; 2003 Feb; 15(2):253-78. PubMed ID: 12590807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Model of the Superior Colliculus Predicts Fixation Locations during Scene Viewing and Visual Search.
    Adeli H; Vitu F; Zelinsky GJ
    J Neurosci; 2017 Feb; 37(6):1453-1467. PubMed ID: 28039373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.