These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
25. Spontaneous formation of Au-Pt alloyed nanoparticles using pure nano-counterparts as starters: a ligand and size dependent process. Usón L; Sebastian V; Mayoral A; Hueso JL; Eguizabal A; Arruebo M; Santamaria J Nanoscale; 2015 Jun; 7(22):10152-61. PubMed ID: 25985914 [TBL] [Abstract][Full Text] [Related]
26. Platinum-coated porous gold nanorods in methanol electrooxidation: dependence of catalytic activity on ligament size. Yoo SH; Liu L; Cho SH; Park S Chem Asian J; 2012 Dec; 7(12):2937-41. PubMed ID: 23023934 [TBL] [Abstract][Full Text] [Related]
27. Strongly confined localized surface plasmon resonance (LSPR) bands of Pt, AgPt, AgAuPt nanoparticles. Sui M; Kunwar S; Pandey P; Lee J Sci Rep; 2019 Nov; 9(1):16582. PubMed ID: 31719664 [TBL] [Abstract][Full Text] [Related]
28. Au-Nanorods Supporting Pd and Pt Nanocatalysts for the Hydrogen Evolution Reaction: Pd Is Revealed to Be a Better Catalyst than Pt. Laghrissi A; Es-Souni M Nanomaterials (Basel); 2023 Jul; 13(13):. PubMed ID: 37446522 [TBL] [Abstract][Full Text] [Related]
29. Pt surface modification of SnO2 nanorod arrays for CO and H2 sensors. Huang H; Ong CY; Guo J; White T; Tse MS; Tan OK Nanoscale; 2010 Jul; 2(7):1203-7. PubMed ID: 20648350 [TBL] [Abstract][Full Text] [Related]
31. Screening by kinetic Monte Carlo simulation of Pt-Au(100) surfaces for the steady-state decomposition of nitric oxide in excess dioxygen. Kieken LD; Neurock M; Mei D J Phys Chem B; 2005 Feb; 109(6):2234-44. PubMed ID: 16851216 [TBL] [Abstract][Full Text] [Related]
32. Formation of aligned nanosilicide structures in a MBE-grown Au/Si(110) system: a real-time temperature-dependent TEM study. Bhatta UM; Dash JK; Roy A; Rath A; Satyam PV J Phys Condens Matter; 2009 May; 21(20):205403. PubMed ID: 21825530 [TBL] [Abstract][Full Text] [Related]
33. Hollow alloy nanostructures templated by Au nanorods: synthesis, mechanistic insights, and electrocatalytic activity. Xue M; Tan Y Nanoscale; 2014 Nov; 6(21):12500-14. PubMed ID: 25166262 [TBL] [Abstract][Full Text] [Related]
34. Forming a Highly Active, Homogeneously Alloyed AuPt Co-catalyst Decoration on TiO Bian H; Nguyen NT; Yoo J; Hejazi S; Mohajernia S; Müller J; Spiecker E; Tsuchiya H; Tomanec O; Sanabria-Arenas BE; Zboril R; Li YY; Schmuki P ACS Appl Mater Interfaces; 2018 May; 10(21):18220-18226. PubMed ID: 29741090 [TBL] [Abstract][Full Text] [Related]
35. Field Emission Properties of Molybdenum Nanoparticles Decorated ZnO Nanorod Arrays. Cao PJ; Yang ZB; Rao CN; Han S; Xu WY; Fang M; Liu XK; Jia F; Zeng YX; Liu WJ; Zhu DL; Lu YM J Nanosci Nanotechnol; 2019 Dec; 19(12):8135-8142. PubMed ID: 31196336 [TBL] [Abstract][Full Text] [Related]
37. High-yield, ultrafast, surface plasmon-enhanced, Au nanorod optical field electron emitter arrays. Hobbs RG; Yang Y; Fallahi A; Keathley PD; De Leo E; Kärtner FX; Graves WS; Berggren KK ACS Nano; 2014 Nov; 8(11):11474-82. PubMed ID: 25380557 [TBL] [Abstract][Full Text] [Related]
38. Fully alloyed metal nanorods with highly tunable properties. Albrecht W; van der Hoeven JE; Deng TS; de Jongh PE; van Blaaderen A Nanoscale; 2017 Feb; 9(8):2845-2851. PubMed ID: 28169378 [TBL] [Abstract][Full Text] [Related]
39. An unconventional mechanism of hollow nanorod formation: asymmetric Cu diffusion in Au-Cu alloy nanorods during galvanic replacement reaction. Thota S; Chen S; Zhao J Chem Commun (Camb); 2016 Apr; 52(32):5593-6. PubMed ID: 27026264 [TBL] [Abstract][Full Text] [Related]
40. Polarization-dependent scanning photoionization microscopy: ultrafast plasmon-mediated electron ejection dynamics in single Au nanorods. Schweikhard V; Grubisic A; Baker TA; Thomann I; Nesbitt DJ ACS Nano; 2011 May; 5(5):3724-35. PubMed ID: 21466166 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]