BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 31892271)

  • 21. The mechanism of the elongation and branching reaction of poly(ADP-ribose) polymerase as derived from crystal structures and mutagenesis.
    Ruf A; Rolli V; de Murcia G; Schulz GE
    J Mol Biol; 1998 Apr; 278(1):57-65. PubMed ID: 9571033
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Coronavirus infection and PARP expression dysregulate the NAD metabolome: An actionable component of innate immunity.
    Heer CD; Sanderson DJ; Voth LS; Alhammad YMO; Schmidt MS; Trammell SAJ; Perlman S; Cohen MS; Fehr AR; Brenner C
    J Biol Chem; 2020 Dec; 295(52):17986-17996. PubMed ID: 33051211
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An enzymatic assay for poly(ADP-ribose) polymerase-1 (PARP-1) via the chemical quantitation of NAD(+): application to the high-throughput screening of small molecules as potential inhibitors.
    Putt KS; Hergenrother PJ
    Anal Biochem; 2004 Mar; 326(1):78-86. PubMed ID: 14769338
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design and Synthesis of Poly(ADP-ribose) Polymerase Inhibitors: Impact of Adenosine Pocket-Binding Motif Appendage to the 3-Oxo-2,3-dihydrobenzofuran-7-carboxamide on Potency and Selectivity.
    Velagapudi UK; Langelier MF; Delgado-Martin C; Diolaiti ME; Bakker S; Ashworth A; Patel BA; Shao X; Pascal JM; Talele TT
    J Med Chem; 2019 Jun; 62(11):5330-5357. PubMed ID: 31042381
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Natural inhibitors of poly(ADP-ribose) polymerase-1.
    Banasik M; Stedeford T; Strosznajder RP
    Mol Neurobiol; 2012 Aug; 46(1):55-63. PubMed ID: 22476980
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesis of Stable NAD
    Madern JM; Kim RQ; Misra M; Dikic I; Zhang Y; Ovaa H; Codée JDC; Filippov DV; van der Heden van Noort GJ
    Chembiochem; 2020 Oct; 21(20):2903-2907. PubMed ID: 32421893
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In silico investigation of PARP-1 catalytic domains in holo and apo states for the design of high-affinity PARP-1 inhibitors.
    Salmas RE; Unlu A; Yurtsever M; Noskov SY; Durdagi S
    J Enzyme Inhib Med Chem; 2016; 31(1):112-20. PubMed ID: 26083304
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Poly(ADP-ribose) polymerase inhibitors.
    Southan GJ; Szabó C
    Curr Med Chem; 2003 Feb; 10(4):321-40. PubMed ID: 12570705
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The role of NADPH oxidase and neuronal nitric oxide synthase in zinc-induced poly(ADP-ribose) polymerase activation and cell death in cortical culture.
    Kim YH; Koh JY
    Exp Neurol; 2002 Oct; 177(2):407-18. PubMed ID: 12429187
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Simple, Sensitive, and Generalizable Plate Assay for Screening PARP Inhibitors.
    Kirby IT; Morgan RK; Cohen MS
    Methods Mol Biol; 2018; 1813():245-252. PubMed ID: 30097873
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Poly(ADP-ribose)-polymerase-catalyzed hydrolysis of NAD+: QM/MM simulation of the enzyme reaction.
    Bellocchi D; Costantino G; Pellicciari R; Re N; Marrone A; Coletti C
    ChemMedChem; 2006 May; 1(5):533-9. PubMed ID: 16892389
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of the ADP-ribosylation sites in the PARP-1 automodification domain: analysis and implications.
    Tao Z; Gao P; Liu HW
    J Am Chem Soc; 2009 Oct; 131(40):14258-60. PubMed ID: 19764761
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Poly(ADP-ribosyl)ation by PARP-1: 'PAR-laying' NAD+ into a nuclear signal.
    Kim MY; Zhang T; Kraus WL
    Genes Dev; 2005 Sep; 19(17):1951-67. PubMed ID: 16140981
    [TBL] [Abstract][Full Text] [Related]  

  • 34. DeoxyNAD and deoxyADP-ribosylation of proteins.
    Alvarez-Gonzalez R
    Mol Cell Biochem; 1994 Sep; 138(1-2):213-9. PubMed ID: 7898466
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions.
    D'Amours D; Desnoyers S; D'Silva I; Poirier GG
    Biochem J; 1999 Sep; 342 ( Pt 2)(Pt 2):249-68. PubMed ID: 10455009
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Poly(ADP-ribose): PARadigms and PARadoxes.
    Bürkle A; Virág L
    Mol Aspects Med; 2013 Dec; 34(6):1046-65. PubMed ID: 23290998
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dissection of ADP-ribose polymer synthesis into individual steps of initiation, elongation, and branching.
    Alvarez-Gonzalez R; Mendoza-Alvarez H
    Biochimie; 1995; 77(6):403-7. PubMed ID: 7578422
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modeling of the Enzyme-Substrate Complexes of Human Poly(ADP-Ribose) Polymerase 1.
    Nilov DK; Pushkarev SV; Gushchina IV; Manasaryan GA; Kirsanov KI; Švedas VK
    Biochemistry (Mosc); 2020 Jan; 85(1):99-107. PubMed ID: 32079521
    [TBL] [Abstract][Full Text] [Related]  

  • 39. New Insights into the Roles of NAD+-Poly(ADP-ribose) Metabolism and Poly(ADP-ribose) Glycohydrolase.
    Tanuma S; Sato A; Oyama T; Yoshimori A; Abe H; Uchiumi F
    Curr Protein Pept Sci; 2016; 17(7):668-682. PubMed ID: 27817743
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Latonduine Analogs Restore F508del-Cystic Fibrosis Transmembrane Conductance Regulator Trafficking through the Modulation of Poly-ADP Ribose Polymerase 3 and Poly-ADP Ribose Polymerase 16 Activity.
    Carlile GW; Robert R; Matthes E; Yang Q; Solari R; Hatley R; Edge CM; Hanrahan JW; Andersen R; Thomas DY; Birault V
    Mol Pharmacol; 2016 Aug; 90(2):65-79. PubMed ID: 27193581
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.