These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 31892378)
1. Extracellular peptidases of insect-associated fungi and their possible use in biological control programs and as pathogenicity markers. Semenova TA; Dunaevsky YE; Beljakova GA; Belozersky MA Fungal Biol; 2020 Jan; 124(1):65-72. PubMed ID: 31892378 [TBL] [Abstract][Full Text] [Related]
2. Insect pathogens as biological control agents: Back to the future. Lacey LA; Grzywacz D; Shapiro-Ilan DI; Frutos R; Brownbridge M; Goettel MS J Invertebr Pathol; 2015 Nov; 132():1-41. PubMed ID: 26225455 [TBL] [Abstract][Full Text] [Related]
4. Recombinant entomopathogenic agents: a review of biotechnological approaches to pest insect control. Karabörklü S; Azizoglu U; Azizoglu ZB World J Microbiol Biotechnol; 2017 Dec; 34(1):14. PubMed ID: 29255969 [TBL] [Abstract][Full Text] [Related]
5. The use of fungal entomopathogens as endophytes in biological control: a review. Vega FE Mycologia; 2018; 110(1):4-30. PubMed ID: 29863999 [TBL] [Abstract][Full Text] [Related]
6. Genome sequence of Isaria javanica and comparative genome analysis insights into family S53 peptidase evolution in fungal entomopathogens. Lin R; Zhang X; Xin B; Zou M; Gao Y; Qin F; Hu Q; Xie B; Cheng X Appl Microbiol Biotechnol; 2019 Sep; 103(17):7111-7128. PubMed ID: 31273397 [TBL] [Abstract][Full Text] [Related]
7. Insight into vital role of autophagy in sustaining biological control potential of fungal pathogens against pest insects and nematodes. Ying SH; Feng MG Virulence; 2019 Dec; 10(1):429-437. PubMed ID: 30257619 [TBL] [Abstract][Full Text] [Related]
8. New insights into the mechanisms of fungal pathogenesis in insects. Clarkson JM; Charnley AK Trends Microbiol; 1996 May; 4(5):197-203. PubMed ID: 8727600 [TBL] [Abstract][Full Text] [Related]
9. Insect Pathogenic Fungi: Genomics, Molecular Interactions, and Genetic Improvements. Wang C; Wang S Annu Rev Entomol; 2017 Jan; 62():73-90. PubMed ID: 27860524 [TBL] [Abstract][Full Text] [Related]
10. [Extracellular hydrolytic enzymes produced by entomopathogenic fungi--role in an infection process]. Włóka E Postepy Biochem; 2011; 57(1):115-21. PubMed ID: 21735827 [TBL] [Abstract][Full Text] [Related]
12. Adaptation of proteases and carbohydrates of saprophytic, phytopathogenic and entomopathogenic fungi to the requirements of their ecological niches. Leger RJS; Joshi L; Roberts DW Microbiology (Reading); 1997 Jun; 143 ( Pt 6)():1983-1992. PubMed ID: 9202474 [TBL] [Abstract][Full Text] [Related]
18. Current developments in the resistance, quality, and production of entomopathogenic fungi. Méndez-González F; Castillo-Minjarez JM; Loera O; Favela-Torres E World J Microbiol Biotechnol; 2022 May; 38(7):115. PubMed ID: 35581403 [TBL] [Abstract][Full Text] [Related]
19. Pathogenesis-related genes of entomopathogenic fungi. Shin TY; Lee MR; Park SE; Lee SJ; Kim WJ; Kim JS Arch Insect Biochem Physiol; 2020 Dec; 105(4):e21747. PubMed ID: 33029869 [TBL] [Abstract][Full Text] [Related]
20. Comparative Genomics Reveals the Core Gene Toolbox for the Fungus-Insect Symbiosis. Wang Y; Stata M; Wang W; Stajich JE; White MM; Moncalvo JM mBio; 2018 May; 9(3):. PubMed ID: 29764946 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]