These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
257 related articles for article (PubMed ID: 31892701)
1. Vortex-induced vibration wind energy harvesting by piezoelectric MEMS device in formation. Lee YJ; Qi Y; Zhou G; Lua KB Sci Rep; 2019 Dec; 9(1):20404. PubMed ID: 31892701 [TBL] [Abstract][Full Text] [Related]
2. Fluid Flow to Electricity: Capturing Flow-Induced Vibrations with Micro-Electromechanical-System-Based Piezoelectric Energy Harvester. Kang JG; Kim H; Shin S; Kim BS Micromachines (Basel); 2024 Apr; 15(5):. PubMed ID: 38793153 [TBL] [Abstract][Full Text] [Related]
3. Experimental Investigation on a Novel Airfoil-Based Piezoelectric Energy Harvester for Aeroelastic Vibration. Shan X; Tian H; Cao H; Feng J; Xie T Micromachines (Basel); 2020 Jul; 11(8):. PubMed ID: 32722607 [TBL] [Abstract][Full Text] [Related]
4. A Wind Tunnel Study of the Flow-Induced Vibrations of a Cylindrical Piezoelectric Transducer. Salem S; Fraňa K Sensors (Basel); 2022 May; 22(9):. PubMed ID: 35591154 [TBL] [Abstract][Full Text] [Related]
5. Electric Power Self-Supply Module for WSN Sensor Node Based on MEMS Vibration Energy Harvester. Zhang W; Dong Y; Tan Y; Zhang M; Qian X; Wang X Micromachines (Basel); 2018 Apr; 9(4):. PubMed ID: 30424095 [TBL] [Abstract][Full Text] [Related]
6. Modeling, Validation, and Performance of Two Tandem Cylinder Piezoelectric Energy Harvesters in Water Flow. Song R; Hou C; Yang C; Yang X; Guo Q; Shan X Micromachines (Basel); 2021 Jul; 12(8):. PubMed ID: 34442494 [TBL] [Abstract][Full Text] [Related]
7. Ceramic-Based Piezoelectric Material for Energy Harvesting Using Hybrid Excitation. Ambrożkiewicz B; Czyż Z; Karpiński P; Stączek P; Litak G; Grabowski Ł Materials (Basel); 2021 Oct; 14(19):. PubMed ID: 34640213 [TBL] [Abstract][Full Text] [Related]
8. Development of a Non-Linear Bi-Directional Vortex-Induced Piezoelectric Energy Harvester with Magnetic Interaction. Su WJ; Wang ZS Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33806133 [TBL] [Abstract][Full Text] [Related]
9. ZnO thin film piezoelectric MEMS vibration energy harvesters with two piezoelectric elements for higher output performance. Wang P; Du H Rev Sci Instrum; 2015 Jul; 86(7):075002. PubMed ID: 26233403 [TBL] [Abstract][Full Text] [Related]
10. A compound cantilever beam piezoelectric harvester based on wind energy excitation. Zhang Z; He L; Hu R; Hu D; Zhou J; Cheng G Rev Sci Instrum; 2022 Aug; 93(8):085003. PubMed ID: 36050068 [TBL] [Abstract][Full Text] [Related]
11. A hybrid indoor ambient light and vibration energy harvester for wireless sensor nodes. Yu H; Yue Q; Zhou J; Wang W Sensors (Basel); 2014 May; 14(5):8740-55. PubMed ID: 24854054 [TBL] [Abstract][Full Text] [Related]
12. Optimization of a Piezoelectric Energy Harvester and Design of a Charge Pump Converter for CMOS-MEMS Monolithic Integration. Duque M; Leon-Salguero E; Sacristán J; Esteve J; Murillo G Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31010076 [TBL] [Abstract][Full Text] [Related]
13. Two-Dimensional Omnidirectional Wind Energy Harvester with a Cylindrical Piezoelectric Composite Cantilever. Xin M; Jiang X; Xu C; Yang J; Lu C Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677188 [TBL] [Abstract][Full Text] [Related]
14. Two-Degree-of-Freedom Piezoelectric Energy Harvesting from Vortex-Induced Vibration. Lu D; Li Z; Hu G; Zhou B; Yang Y; Zhang G Micromachines (Basel); 2022 Nov; 13(11):. PubMed ID: 36363957 [TBL] [Abstract][Full Text] [Related]
15. A vibration-based MEMS piezoelectric energy harvester and power conditioning circuit. Yu H; Zhou J; Deng L; Wen Z Sensors (Basel); 2014 Feb; 14(2):3323-41. PubMed ID: 24556670 [TBL] [Abstract][Full Text] [Related]
16. Modeling and Analysis of Upright Piezoelectric Energy Harvester under Aerodynamic Vortex-induced Vibration. Jia J; Shan X; Upadrashta D; Xie T; Yang Y; Song R Micromachines (Basel); 2018 Dec; 9(12):. PubMed ID: 30562985 [TBL] [Abstract][Full Text] [Related]
17. A Piezoelectric and Electromagnetic Hybrid Galloping Energy Harvester with the Magnet Embedded in the Bluff Body. Li X; Bi C; Li Z; Liu B; Wang T; Zhang S Micromachines (Basel); 2021 May; 12(6):. PubMed ID: 34071414 [TBL] [Abstract][Full Text] [Related]
18. Experimental Study on Magnetic Coupling Piezoelectric-Electromagnetic Composite Galloping Energy Harvester. Li X; Ma T; Liu B; Wang C; Su Y Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365938 [TBL] [Abstract][Full Text] [Related]
19. Study on the Critical Wind Speed of a Resonant Cavity Piezoelectric Energy Harvester Driven by Driving Wind Pressure. Li X; Li Z; Liu Q; Shan X Micromachines (Basel); 2019 Dec; 10(12):. PubMed ID: 31805751 [TBL] [Abstract][Full Text] [Related]
20. Karman Vortex Creation Using Cylinder for Flutter Energy Harvester Device. Atrah AB; Ab-Rahman MS; Salleh H; Nuawi MZ; Mohd Nor MJ; Jamaludin NB Micromachines (Basel); 2017 Jul; 8(7):. PubMed ID: 30400418 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]