BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 31893434)

  • 1. Two-Photon Autofluorescence Imaging of Fixed Tissues: Feasibility and Potential Values for Biomedical Applications.
    Li LZ; Masek M; Wang T; Xu HN; Nioka S; Baur JA; Ragan TM
    Adv Exp Med Biol; 2020; 1232():375-381. PubMed ID: 31893434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical Redox Imaging of Fixed Unstained Muscle Slides Reveals Useful Biological Information.
    Xu HN; Zhao H; Chellappa K; Davis JG; Nioka S; Baur JA; Li LZ
    Mol Imaging Biol; 2019 Jun; 21(3):417-425. PubMed ID: 30977079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiphoton FLIM imaging of NAD(P)H and FAD with one excitation wavelength.
    Cao R; Wallrabe H; Periasamy A
    J Biomed Opt; 2020 Jan; 25(1):1-16. PubMed ID: 31920048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Label-Free Optical Metabolic Imaging in Cells and Tissues.
    Georgakoudi I; Quinn KP
    Annu Rev Biomed Eng; 2023 Jun; 25():413-443. PubMed ID: 37104650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imaging Redox State in Mouse Muscles of Different Ages.
    Moon L; Frederick DW; Baur JA; Li LZ
    Adv Exp Med Biol; 2017; 977():51-57. PubMed ID: 28685427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autofluorescence spectroscopy for NADH and flavoproteins redox state monitoring in the isolated rat heart subjected to ischemia-reperfusion.
    Papayan G; Petrishchev N; Galagudza M
    Photodiagnosis Photodyn Ther; 2014 Sep; 11(3):400-8. PubMed ID: 24854770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical Redox Imaging of Lonidamine Treatment Response of Melanoma Cells and Xenografts.
    Xu HN; Feng M; Nath K; Nelson D; Roman J; Zhao H; Lin Z; Glickson J; Li LZ
    Mol Imaging Biol; 2019 Jun; 21(3):426-435. PubMed ID: 30151646
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MITOCHONDRIAL REDOX IMAGING FOR CANCER DIAGNOSTIC AND THERAPEUTIC STUDIES.
    Li LZ; Xu HN; Ranji M; Nioka S; Chance B
    J Innov Opt Health Sci; 2009 Oct; 2(4):325-341. PubMed ID: 26015810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectroscopic Study of Time-Varying Optical Redox Ratio in NADH/FAD Solution.
    Lim SY; Jang JI; Yoon H; Kim HM
    J Phys Chem B; 2022 Dec; 126(47):9840-9849. PubMed ID: 36399328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential Expression of PGC1α in Intratumor Redox Subpopulations of Breast Cancer.
    Lin Z; Xu HN; Wang Y; Floros J; Li LZ
    Adv Exp Med Biol; 2018; 1072():177-181. PubMed ID: 30178342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical Redox Imaging Detects the Effects of DEK Oncogene Knockdown on the Redox State of MDA-MB-231 Breast Cancer Cells.
    Wen Y; Xu HN; Privette Vinnedge L; Feng M; Li LZ
    Mol Imaging Biol; 2019 Jun; 21(3):410-416. PubMed ID: 30758703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioenergetic Alterations of Metabolic Redox Coenzymes as NADH, FAD and FMN by Means of Fluorescence Lifetime Imaging Techniques.
    Kalinina S; Freymueller C; Naskar N; von Einem B; Reess K; Sroka R; Rueck A
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34073057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. QUANTITATIVE REDOX SCANNING OF TISSUE SAMPLES USING A CALIBRATION PROCEDURE.
    Xu HN; Wu B; Nioka S; Chance B; Li LZ
    J Innov Opt Health Sci; 2009 Oct; 2(4):375-385. PubMed ID: 31827629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. REDOX IMAGING OF THE p53-DEPENDENT MITOCHONDRIAL REDOX STATE IN COLON CANCER
    Xu HN; Feng M; Moon L; Dolloff N; El-Deiry W; Li LZ
    J Innov Opt Health Sci; 2013 Jul; 6(3):. PubMed ID: 26207147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterizing the metabolic heterogeneity in human breast cancer xenografts by 3D high resolution fluorescence imaging.
    Xu HN; Zheng G; Tchou J; Nioka S; Li LZ
    Springerplus; 2013 Dec; 2(1):73. PubMed ID: 23543813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential Biomarker for Triple-Negative Breast Cancer Invasiveness by Optical Redox Imaging.
    Feng M; Xu HN; Jiang J; Li LZ
    Adv Exp Med Biol; 2021; 1269():247-251. PubMed ID: 33966225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating Cell Metabolism Through Autofluorescence Imaging of NAD(P)H and FAD.
    Kolenc OI; Quinn KP
    Antioxid Redox Signal; 2019 Feb; 30(6):875-889. PubMed ID: 29268621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D Optical Cryo-Imaging Method: A Novel Approach to Quantify Renal Mitochondrial Bioenergetics Dysfunction.
    Mehrvar S; Camara AKS; Ranji M
    Methods Mol Biol; 2021; 2276():259-270. PubMed ID: 34060048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical redox imaging indices discriminate human breast cancer from normal tissues.
    Xu HN; Tchou J; Feng M; Zhao H; Li LZ
    J Biomed Opt; 2016 Nov; 21(11):114003. PubMed ID: 27896360
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Autofluorescence Imaging to Evaluate Cellular Metabolism.
    Theodossiou A; Hu L; Wang N; Nguyen U; Walsh AJ
    J Vis Exp; 2021 Nov; (177):. PubMed ID: 34842243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.