BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 31893444)

  • 1. Methods of Gene Expression Profiling to Understand Abiotic Stress Perception and Response in Legume Crops.
    Bala M; Sinha R; Mallick MA; Sharma TR; Singh AK
    Methods Mol Biol; 2020; 2107():99-126. PubMed ID: 31893444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Legume genetic resources and transcriptome dynamics under abiotic stress conditions.
    Abdelrahman M; Jogaiah S; Burritt DJ; Tran LP
    Plant Cell Environ; 2018 Sep; 41(9):1972-1983. PubMed ID: 29314055
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Singh D; Chaudhary P; Taunk J; Singh CK; Singh D; Tomar RSS; Aski M; Konjengbam NS; Raje RS; Singh S; Sengar RS; Yadav RK; Pal M
    Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methods for Screening Legume Crops for Abiotic Stress Tolerance through Physiological and Biochemical Approaches.
    Sinha R; Bala M; Kumar M; Sharma TR; Singh AK
    Methods Mol Biol; 2020; 2107():277-303. PubMed ID: 31893454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prospects of next generation sequencing in lentil breeding.
    Kumar J; Sen Gupta D
    Mol Biol Rep; 2020 Nov; 47(11):9043-9053. PubMed ID: 33037962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive analysis and identification of drought-responsive candidate NAC genes in three semi-arid tropics (SAT) legume crops.
    Singh S; Kudapa H; Garg V; Varshney RK
    BMC Genomics; 2021 Apr; 22(1):289. PubMed ID: 33882825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptome profiling of radish (Raphanus sativus L.) root and identification of genes involved in response to Lead (Pb) stress with next generation sequencing.
    Wang Y; Xu L; Chen Y; Shen H; Gong Y; Limera C; Liu L
    PLoS One; 2013; 8(6):e66539. PubMed ID: 23840502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of Gene Modules Associated with Low Temperatures Response in Bambara Groundnut by Network-Based Analysis.
    Bonthala VS; Mayes K; Moreton J; Blythe M; Wright V; May ST; Massawe F; Mayes S; Twycross J
    PLoS One; 2016; 11(2):e0148771. PubMed ID: 26859686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Entailing the Next-Generation Sequencing and Metabolome for Sustainable Agriculture by Improving Plant Tolerance.
    Ashraf MF; Hou D; Hussain Q; Imran M; Pei J; Ali M; Shehzad A; Anwar M; Noman A; Waseem M; Lin X
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35054836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. De novo transcriptome analysis of Medicago falcata reveals novel insights about the mechanisms underlying abiotic stress-responsive pathway.
    Miao Z; Xu W; Li D; Hu X; Liu J; Zhang R; Tong Z; Dong J; Su Z; Zhang L; Sun M; Li W; Du Z; Hu S; Wang T
    BMC Genomics; 2015 Oct; 16():818. PubMed ID: 26481731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Legume genomics: understanding biology through DNA and RNA sequencing.
    O'Rourke JA; Bolon YT; Bucciarelli B; Vance CP
    Ann Bot; 2014 Jun; 113(7):1107-20. PubMed ID: 24769535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reverse genetic approaches for breeding nutrient-rich and climate-resilient cereal and food legume crops.
    Kumar J; Kumar A; Sen Gupta D; Kumar S; DePauw RM
    Heredity (Edinb); 2022 Jun; 128(6):473-496. PubMed ID: 35249099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The salt-responsive transcriptome of chickpea roots and nodules via deepSuperSAGE.
    Molina C; Zaman-Allah M; Khan F; Fatnassi N; Horres R; Rotter B; Steinhauer D; Amenc L; Drevon JJ; Winter P; Kahl G
    BMC Plant Biol; 2011 Feb; 11():31. PubMed ID: 21320317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adapting legume crops to climate change using genomic approaches.
    Mousavi-Derazmahalleh M; Bayer PE; Hane JK; Valliyodan B; Nguyen HT; Nelson MN; Erskine W; Varshney RK; Papa R; Edwards D
    Plant Cell Environ; 2019 Jan; 42(1):6-19. PubMed ID: 29603775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative transcriptomic and physiological analyses of contrasting hybrid cultivars ND476 and ZX978 identify important differentially expressed genes and pathways regulating drought stress tolerance in maize.
    Liu G; Zenda T; Liu S; Wang X; Jin H; Dong A; Yang Y; Duan H
    Genes Genomics; 2020 Aug; 42(8):937-955. PubMed ID: 32623576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of drought response genes by digital gene expression (DGE) analysis in Caragana korshinskii Kom.
    Long Y; Liang F; Zhang J; Xue M; Zhang T; Pei X
    Gene; 2020 Jan; 725():144170. PubMed ID: 31647996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The WRKY transcription factor family in cowpea: Genomic characterization and transcriptomic profiling under root dehydration.
    Matos MKDS; Benko-Iseppon AM; Bezerra-Neto JP; Ferreira-Neto JRC; Wang Y; Liu H; Pandolfi V; Amorim LLB; Willadino L; do Vale Amorim TC; Kido EA; Vianello RP; Timko MP; Brasileiro-Vidal AC
    Gene; 2022 May; 823():146377. PubMed ID: 35231571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Legume genomics and transcriptomics: From classic breeding to modern technologies.
    Afzal M; Alghamdi SS; Migdadi HH; Khan MA; Nurmansyah ; Mirza SB; El-Harty E
    Saudi J Biol Sci; 2020 Jan; 27(1):543-555. PubMed ID: 31889880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LegumeIP V3: from models to crops-an integrative gene discovery platform for translational genomics in legumes.
    Dai X; Zhuang Z; Boschiero C; Dong Y; Zhao PX
    Nucleic Acids Res; 2021 Jan; 49(D1):D1472-D1479. PubMed ID: 33166388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.