BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

434 related articles for article (PubMed ID: 31893458)

  • 1. CRISPR/Cas9-Based Gene Editing in Soybean.
    Bao A; Tran LP; Cao D
    Methods Mol Biol; 2020; 2107():349-364. PubMed ID: 31893458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR-Cas9 mediated targeted disruption of FAD2-2 microsomal omega-6 desaturase in soybean (Glycine max.L).
    Al Amin N; Ahmad N; Wu N; Pu X; Ma T; Du Y; Bo X; Wang N; Sharif R; Wang P
    BMC Biotechnol; 2019 Jan; 19(1):9. PubMed ID: 30691438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR/Cas9-Mediated Genome Editing in Soybean Hairy Roots.
    Cai Y; Chen L; Liu X; Sun S; Wu C; Jiang B; Han T; Hou W
    PLoS One; 2015; 10(8):e0136064. PubMed ID: 26284791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9.
    Du H; Zeng X; Zhao M; Cui X; Wang Q; Yang H; Cheng H; Yu D
    J Biotechnol; 2016 Jan; 217():90-7. PubMed ID: 26603121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Site-directed mutagenesis by biolistic transformation efficiently generates inheritable mutations in a targeted locus in soybean somatic embryos and transgene-free descendants in the T
    Adachi K; Hirose A; Kanazashi Y; Hibara M; Hirata T; Mikami M; Endo M; Hirose S; Maruyama N; Ishimoto M; Abe J; Yamada T
    Transgenic Res; 2021 Feb; 30(1):77-89. PubMed ID: 33386504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient genome editing of Brassica campestris based on the CRISPR/Cas9 system.
    Xiong X; Liu W; Jiang J; Xu L; Huang L; Cao J
    Mol Genet Genomics; 2019 Oct; 294(5):1251-1261. PubMed ID: 31129735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome Editing in Potato with CRISPR/Cas9.
    Nadakuduti SS; Starker CG; Voytas DF; Buell CR; Douches DS
    Methods Mol Biol; 2019; 1917():183-201. PubMed ID: 30610637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome Editing in Soybean with CRISPR/Cas9.
    Liu J; Gunapati S; Mihelich NT; Stec AO; Michno JM; Stupar RM
    Methods Mol Biol; 2019; 1917():217-234. PubMed ID: 30610639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR/Cas9-mediated targeted mutagenesis of GmSPL9 genes alters plant architecture in soybean.
    Bao A; Chen H; Chen L; Chen S; Hao Q; Guo W; Qiu D; Shan Z; Yang Z; Yuan S; Zhang C; Zhang X; Liu B; Kong F; Li X; Zhou X; Tran LP; Cao D
    BMC Plant Biol; 2019 Apr; 19(1):131. PubMed ID: 30961525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous induction of mutant alleles of two allergenic genes in soybean by using site-directed mutagenesis.
    Sugano S; Hirose A; Kanazashi Y; Adachi K; Hibara M; Itoh T; Mikami M; Endo M; Hirose S; Maruyama N; Abe J; Yamada T
    BMC Plant Biol; 2020 Nov; 20(1):513. PubMed ID: 33176692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Agrobacterium-Mediated CRISPR/Cas9 Platform for Genome Editing in Maize.
    Lee K; Zhu H; Yang B; Wang K
    Methods Mol Biol; 2019; 1917():121-143. PubMed ID: 30610633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR/Cas9 Technology for Potato Functional Genomics and Breeding.
    González MN; Massa GA; Andersson M; Storani L; Olsson N; Décima Oneto CA; Hofvander P; Feingold SE
    Methods Mol Biol; 2023; 2653():333-361. PubMed ID: 36995636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR/Cas9-mediated targeted mutagenesis of GmLHY genes alters plant height and internode length in soybean.
    Cheng Q; Dong L; Su T; Li T; Gan Z; Nan H; Lu S; Fang C; Kong L; Li H; Hou Z; Kou K; Tang Y; Lin X; Zhao X; Chen L; Liu B; Kong F
    BMC Plant Biol; 2019 Dec; 19(1):562. PubMed ID: 31852439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of CRISPR/Cas Genome Editing Technology for Targeted Mutagenesis in Rice.
    Xu R; Wei P; Yang J
    Methods Mol Biol; 2017; 1498():33-40. PubMed ID: 27709567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient CRISPR/Cas9-mediated genome editing in sheepgrass (Leymus chinensis).
    Lin Z; Chen L; Tang S; Zhao M; Li T; You J; You C; Li B; Zhao Q; Zhang D; Wang J; Shen Z; Song X; Zhang S; Cao X
    J Integr Plant Biol; 2023 Nov; 65(11):2416-2420. PubMed ID: 37698072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation of transgene-free PDS mutants in potato by Agrobacterium-mediated transformation.
    Bánfalvi Z; Csákvári E; Villányi V; Kondrák M
    BMC Biotechnol; 2020 May; 20(1):25. PubMed ID: 32398038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing the CRISPR/Cas9 system based on multiple GmU6 promoters in soybean.
    Di YH; Sun XJ; Hu Z; Jiang QY; Song GH; Zhang B; Zhao SS; Zhang H
    Biochem Biophys Res Commun; 2019 Nov; 519(4):819-823. PubMed ID: 31558318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An efficient and specific CRISPR-Cas9 genome editing system targeting soybean phytoene desaturase genes.
    Lu QSM; Tian L
    BMC Biotechnol; 2022 Feb; 22(1):7. PubMed ID: 35168613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of an Agrobacterium-delivered codon-optimized CRISPR/Cas9 system for chickpea genome editing.
    Gupta SK; Vishwakarma NK; Malakar P; Vanspati P; Sharma NK; Chattopadhyay D
    Protoplasma; 2023 Sep; 260(5):1437-1451. PubMed ID: 37131068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene Editing in Sorghum Through Agrobacterium.
    Sander JD
    Methods Mol Biol; 2019; 1931():155-168. PubMed ID: 30652289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.