BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

440 related articles for article (PubMed ID: 31893458)

  • 21. Using
    Zhang Y; Cai Y; Sun S; Han T; Chen L; Hou W
    Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36361580
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Progresses of CRISPR/Cas9 genome editing in forage crops.
    Ul Haq SI; Zheng D; Feng N; Jiang X; Qiao F; He JS; Qiu QS
    J Plant Physiol; 2022 Dec; 279():153860. PubMed ID: 36371870
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Efficient CRISPR-mediated base editing in
    Rodrigues SD; Karimi M; Impens L; Van Lerberge E; Coussens G; Aesaert S; Rombaut D; Holtappels D; Ibrahim HMM; Van Montagu M; Wagemans J; Jacobs TB; De Coninck B; Pauwels L
    Proc Natl Acad Sci U S A; 2021 Jan; 118(2):. PubMed ID: 33443212
    [No Abstract]   [Full Text] [Related]  

  • 24. Demonstration of highly efficient dual gRNA CRISPR/Cas9 editing of the homeologous GmFAD2-1A and GmFAD2-1B genes to yield a high oleic, low linoleic and α-linolenic acid phenotype in soybean.
    Do PT; Nguyen CX; Bui HT; Tran LTN; Stacey G; Gillman JD; Zhang ZJ; Stacey MG
    BMC Plant Biol; 2019 Jul; 19(1):311. PubMed ID: 31307375
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CRISPR/Cas9 for Mutagenesis in Rice.
    Char SN; Li R; Yang B
    Methods Mol Biol; 2019; 1864():279-293. PubMed ID: 30415343
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Application of CRISPR/Cas9 to Tragopogon (Asteraceae), an evolutionary model for the study of polyploidy.
    Shan S; Mavrodiev EV; Li R; Zhang Z; Hauser BA; Soltis PS; Soltis DE; Yang B
    Mol Ecol Resour; 2018 Nov; 18(6):1427-1443. PubMed ID: 30086204
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rapid generation of genetic diversity by multiplex CRISPR/Cas9 genome editing in rice.
    Shen L; Hua Y; Fu Y; Li J; Liu Q; Jiao X; Xin G; Wang J; Wang X; Yan C; Wang K
    Sci China Life Sci; 2017 May; 60(5):506-515. PubMed ID: 28349304
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CRISPR/Cas9-Mediated Deletion of Large Genomic Fragments in Soybean.
    Cai Y; Chen L; Sun S; Wu C; Yao W; Jiang B; Han T; Hou W
    Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30513774
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Developing a rapid and highly efficient cowpea regeneration, transformation and genome editing system using embryonic axis explants.
    Che P; Chang S; Simon MK; Zhang Z; Shaharyar A; Ourada J; O'Neill D; Torres-Mendoza M; Guo Y; Marasigan KM; Vielle-Calzada JP; Ozias-Akins P; Albertsen MC; Jones TJ
    Plant J; 2021 May; 106(3):817-830. PubMed ID: 33595147
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A robust and practical CRISPR/crRNA screening system for soybean cultivar editing using LbCpf1 ribonucleoproteins.
    Kim H; Choi J
    Plant Cell Rep; 2021 Jun; 40(6):1059-1070. PubMed ID: 32945949
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Construction and Analysis of
    Wu N; Lu Q; Wang P; Zhang Q; Zhang J; Qu J; Wang N
    Int J Mol Sci; 2020 Feb; 21(3):. PubMed ID: 32046096
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optimization of multiplexed CRISPR/Cas9 system for highly efficient genome editing in Setaria viridis.
    Weiss T; Wang C; Kang X; Zhao H; Elena Gamo M; Starker CG; Crisp PA; Zhou P; Springer NM; Voytas DF; Zhang F
    Plant J; 2020 Nov; 104(3):828-838. PubMed ID: 32786122
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CRISPR/Cas9-mediated genome editing in sea urchins.
    Lin CY; Oulhen N; Wessel G; Su YH
    Methods Cell Biol; 2019; 151():305-321. PubMed ID: 30948015
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Large chromosomal segment deletions by CRISPR/LbCpf1-mediated multiplex gene editing in soybean.
    Duan K; Cheng Y; Ji J; Wang C; Wei Y; Wang Y
    J Integr Plant Biol; 2021 Sep; 63(9):1620-1631. PubMed ID: 34331750
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gene Editing in Dimorphic Fungi Using CRISPR/Cas9.
    Kujoth GC; Sullivan TD; Klein BS
    Curr Protoc Microbiol; 2020 Dec; 59(1):e132. PubMed ID: 33315302
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Manipulating the Biosynthesis of Bioactive Compound Alkaloids for Next-Generation Metabolic Engineering in Opium Poppy Using CRISPR-Cas 9 Genome Editing Technology.
    Alagoz Y; Gurkok T; Zhang B; Unver T
    Sci Rep; 2016 Aug; 6():30910. PubMed ID: 27483984
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Eliciting Targeted Mutations in Medicago sativa Using CRISPR/Cas9-Mediated Genome Editing: A Potential Tool for the Improvement of Disease Resistance.
    Subedi U; Burton Hughes K; Chen G; Hannoufa A; Singer SD
    Methods Mol Biol; 2023; 2659():219-239. PubMed ID: 37249896
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficient Genome Editing Using CRISPR/Cas9 Technology in Chicory.
    Bernard G; Gagneul D; Alves Dos Santos H; Etienne A; Hilbert JL; Rambaud C
    Int J Mol Sci; 2019 Mar; 20(5):. PubMed ID: 30845784
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Induced mutation and epigenetics modification in plants for crop improvement by targeting CRISPR/Cas9 technology.
    Khan MHU; Khan SU; Muhammad A; Hu L; Yang Y; Fan C
    J Cell Physiol; 2018 Jun; 233(6):4578-4594. PubMed ID: 29194606
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optimisation of the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 : single-guide RNA (sgRNA) delivery system in a goat model.
    Huang Y; Ding Y; Liu Y; Zhou S; Ding Q; Yan H; Ma B; Zhao X; Wang X; Chen Y
    Reprod Fertil Dev; 2019 Aug; 31(9):1533-1537. PubMed ID: 31079595
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.