BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 31893470)

  • 1. A Method to Calculate the Relative Binding Free Energy Differences of α-Helical Stapled Peptides.
    Valiente PA; Becerra D; Kim PM
    J Org Chem; 2020 Feb; 85(3):1644-1651. PubMed ID: 31893470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular Simulations Identify Binding Poses and Approximate Affinities of Stapled α-Helical Peptides to MDM2 and MDMX.
    Morrone JA; Perez A; Deng Q; Ha SN; Holloway MK; Sawyer TK; Sherborne BS; Brown FK; Dill KA
    J Chem Theory Comput; 2017 Feb; 13(2):863-869. PubMed ID: 28042965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissecting the geometric and hydrophobic constraints of stapled peptides.
    Li J; Tan YS; Verma CS
    Proteins; 2024 Jan; ():. PubMed ID: 38196284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship between helix stability and binding affinities: molecular dynamics simulations of Bfl-1/A1-binding pro-apoptotic BH3 peptide helices in explicit solvent.
    Modi V; Lama D; Sankararamakrishnan R
    J Biomol Struct Dyn; 2013; 31(1):65-77. PubMed ID: 22803956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure-based derivation and optimization of YAP-like coactivator-derived peptides to selectively target TEAD family transcription factors by hydrocarbon stapling and cyclization.
    He B; Wu T; He P; Lv F; Liu H
    Chem Biol Drug Des; 2021 Jun; 97(6):1129-1136. PubMed ID: 33283479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular modeling and rational design of hydrocarbon-stapled/halogenated helical peptides targeting CETP self-binding site: Therapeutic implication for atherosclerosis.
    Zhu J; Wei S; Huang L; Zhao Q; Zhu H; Zhang A
    J Mol Graph Model; 2020 Jan; 94():107455. PubMed ID: 31586754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Macrocyclic α helical peptide therapeutic modality: A perspective of learnings and challenges.
    Sawyer TK; Partridge AW; Kaan HYK; Juang YC; Lim S; Johannes C; Yuen TY; Verma C; Kannan S; Aronica P; Tan YS; Sherborne B; Ha S; Hochman J; Chen S; Surdi L; Peier A; Sauvagnat B; Dandliker PJ; Brown CJ; Ng S; Ferrer F; Lane DP
    Bioorg Med Chem; 2018 Jun; 26(10):2807-2815. PubMed ID: 29598901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. X-ray Crystallographic Structure of α-Helical Peptide Stabilized by Hydrocarbon Stapling at
    Makura Y; Ueda A; Kato T; Iyoshi A; Higuchi M; Doi M; Tanaka M
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34069753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellular Uptake and Ultrastructural Localization Underlie the Pro-apoptotic Activity of a Hydrocarbon-stapled BIM BH3 Peptide.
    Edwards AL; Wachter F; Lammert M; Huhn AJ; Luccarelli J; Bird GH; Walensky LD
    ACS Chem Biol; 2015 Sep; 10(9):2149-57. PubMed ID: 26151238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binding modes of Bcl-2 homology 3 (BH3) peptides with anti-apoptotic protein A1 and redesign of peptide inhibitors: a computational study.
    Chen Y; Wang J; Zhang J; Wang W
    J Biomol Struct Dyn; 2018 Nov; 36(15):3967-3977. PubMed ID: 29137527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In-Bridge Stereochemistry: A Determinant of Stapled Peptide Conformation and Activity.
    Zhang J; Dong S
    Chembiochem; 2024 Apr; 25(7):e202300747. PubMed ID: 38191871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stapled BH3 peptides against MCL-1: mechanism and design using atomistic simulations.
    Joseph TL; Lane DP; Verma CS
    PLoS One; 2012; 7(8):e43985. PubMed ID: 22952838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational Modeling of Stapled Peptides toward a Treatment Strategy for CML and Broader Implications in the Design of Lengthy Peptide Therapeutics.
    Cornillie SP; Bruno BJ; Lim CS; Cheatham TE
    J Phys Chem B; 2018 Apr; 122(14):3864-3875. PubMed ID: 29519125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring biocompatible chemistry to create stapled and photoswitchable variants of the antimicrobial peptide aurein 1.2.
    Coram AE; Morewood R; Voss S; Price JL; Nitsche C
    J Pept Sci; 2024 Apr; 30(4):e3551. PubMed ID: 37926859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cyclobutane-bearing restricted anchoring residues enabled geometry-specific hydrocarbon peptide stapling.
    Chen B; Liu C; Cong W; Gao F; Zou Y; Su L; Liu L; Hillisch A; Lehmann L; Bierer D; Li X; Hu HG
    Chem Sci; 2023 Oct; 14(41):11499-11506. PubMed ID: 37886087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stapled Helical Peptides Bearing Different Anchoring Residues.
    Li X; Chen S; Zhang WD; Hu HG
    Chem Rev; 2020 Sep; 120(18):10079-10144. PubMed ID: 32794722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Therapeutic stapled peptides: Efficacy and molecular targets.
    Li Y; Wu M; Fu Y; Xue J; Yuan F; Qu T; Rissanou AN; Wang Y; Li X; Hu H
    Pharmacol Res; 2024 May; 203():107137. PubMed ID: 38522761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decoding the dynamics of BCL9 triazole stapled peptide.
    Gaikwad V; Choudhury AR; Chakrabarti R
    Biophys Chem; 2024 Apr; 307():107197. PubMed ID: 38335808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stapled Peptides with γ-Methylated Hydrocarbon Chains for the Estrogen Receptor/Coactivator Interaction.
    Speltz TE; Fanning SW; Mayne CG; Fowler C; Tajkhorshid E; Greene GL; Moore TW
    Angew Chem Int Ed Engl; 2016 Mar; 55(13):4252-5. PubMed ID: 26928945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide analysis of LXXLL-mediated DAX1/SHP-nuclear receptor interaction network and rational design of stapled LXXLL-based peptides to target the specific network profile.
    Qian H; He P; Lv F; Wu W
    Int J Biol Macromol; 2019 May; 129():13-22. PubMed ID: 30731167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.