These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
360 related articles for article (PubMed ID: 31893570)
1. A Redox-Active 2D Metal-Organic Framework for Efficient Lithium Storage with Extraordinary High Capacity. Jiang Q; Xiong P; Liu J; Xie Z; Wang Q; Yang XQ; Hu E; Cao Y; Sun J; Xu Y; Chen L Angew Chem Int Ed Engl; 2020 Mar; 59(13):5273-5277. PubMed ID: 31893570 [TBL] [Abstract][Full Text] [Related]
2. Triphenylamine-Based Metal-Organic Frameworks as Cathode Materials in Lithium-Ion Batteries with Coexistence of Redox Active Sites, High Working Voltage, and High Rate Stability. Peng Z; Yi X; Liu Z; Shang J; Wang D ACS Appl Mater Interfaces; 2016 Jun; 8(23):14578-85. PubMed ID: 27225327 [TBL] [Abstract][Full Text] [Related]
4. A Redox-Active Iron-Organic Framework Cathodes for Sustainable Magnesium Metal Batteries. Zhao Y; Chen S; Zhou M; Pan M; Sun Y; Zhang D; Zhang S; Wang Y; Li M; Zeng X; Yang J; Wang J; NuLi Y ACS Nano; 2024 Aug; 18(33):22356-22368. PubMed ID: 39109407 [TBL] [Abstract][Full Text] [Related]
5. Immobilizing Redox-Active Tricycloquinazoline into a 2D Conductive Metal-Organic Framework for Lithium Storage. Yan J; Cui Y; Xie M; Yang GZ; Bin DS; Li D Angew Chem Int Ed Engl; 2021 Nov; 60(46):24467-24472. PubMed ID: 34519413 [TBL] [Abstract][Full Text] [Related]
6. One-Dimensional π-d Conjugated Conductive Metal-Organic Framework with Dual Redox-Active Sites for High-Capacity and Durable Cathodes for Aqueous Zinc Batteries. Sang Z; Liu J; Zhang X; Yin L; Hou F; Liang J ACS Nano; 2023 Feb; 17(3):3077-3087. PubMed ID: 36688450 [TBL] [Abstract][Full Text] [Related]
7. Ultrathin Two-Dimensional Metal-Organic Framework Nanosheets with the Inherent Open Active Sites as Electrocatalysts in Aprotic Li-O Yuan M; Wang R; Fu W; Lin L; Sun Z; Long X; Zhang S; Nan C; Sun G; Li H; Ma S ACS Appl Mater Interfaces; 2019 Mar; 11(12):11403-11413. PubMed ID: 30816695 [TBL] [Abstract][Full Text] [Related]
9. Ferrocene-Based Mixed-Valence Metal-Organic Framework as an Efficient and Stable Cathode for Lithium-Ion-Based Dual-Ion Battery. Li C; Yang H; Xie J; Wang K; Li J; Zhang Q ACS Appl Mater Interfaces; 2020 Jul; 12(29):32719-32725. PubMed ID: 32602692 [TBL] [Abstract][Full Text] [Related]
10. A Monocrystalline Coordination Polymer with Multiple Redox Centers as a High-Performance Cathode for Lithium-Ion Batteries. Luo Y; Liu J; Zhang L Angew Chem Int Ed Engl; 2022 Sep; 61(38):e202209458. PubMed ID: 35899824 [TBL] [Abstract][Full Text] [Related]
12. Bottom-Up Fabrication of 1D Cu-based Conductive Metal-Organic Framework Nanowires as a High-Rate Anode towards Efficient Lithium Storage. Guo L; Sun J; Zhang W; Hou L; Liang L; Liu Y; Yuan C ChemSusChem; 2019 Nov; 12(22):5051-5058. PubMed ID: 31596030 [TBL] [Abstract][Full Text] [Related]
13. High-energy lithium-ion hybrid supercapacitors composed of hierarchical urchin-like WO Xu J; Li Y; Wang L; Cai Q; Li Q; Gao B; Zhang X; Huo K; Chu PK Nanoscale; 2016 Sep; 8(37):16761-16768. PubMed ID: 27714151 [TBL] [Abstract][Full Text] [Related]
14. 2D conductive MOFs with sufficient redox sites: reduced graphene oxide/Cu-benzenehexathiolate composites as high capacity anode materials for lithium-ion batteries. Meng C; Hu P; Chen H; Cai Y; Zhou H; Jiang Z; Zhu X; Liu Z; Wang C; Yuan A Nanoscale; 2021 Apr; 13(16):7751-7760. PubMed ID: 33861280 [TBL] [Abstract][Full Text] [Related]
15. Regulation of Electron Delocalization Region in 2D Heteroligand-Based Copper-Organic Framework to Enhance Lu H; Hu J; Zhang K; Zhang Y; Jiang B; Zhang M; Deng S; Zhao J; Pang H; Xu B Adv Mater; 2024 Sep; 36(39):e2408396. PubMed ID: 39101297 [TBL] [Abstract][Full Text] [Related]
16. Alternate Storage of Opposite Charges in Multisites for High-Energy-Density Al-MOF Batteries. Guo Y; Wang W; Lei H; Wang M; Jiao S Adv Mater; 2022 Apr; 34(13):e2110109. PubMed ID: 35112402 [TBL] [Abstract][Full Text] [Related]
17. Crystal Engineering of Naphthalenediimide-Based Metal-Organic Frameworks: Structure-Dependent Lithium Storage. Tian B; Ning GH; Gao Q; Tan LM; Tang W; Chen Z; Su C; Loh KP ACS Appl Mater Interfaces; 2016 Nov; 8(45):31067-31075. PubMed ID: 27786456 [TBL] [Abstract][Full Text] [Related]
18. Challenges and prospects of lithium-sulfur batteries. Manthiram A; Fu Y; Su YS Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063 [TBL] [Abstract][Full Text] [Related]
19. Metal-Organic Framework-Derived Nanoconfinements of CoF Wu F; Srot V; Chen S; Zhang M; van Aken PA; Wang Y; Maier J; Yu Y ACS Nano; 2021 Jan; 15(1):1509-1518. PubMed ID: 33356136 [TBL] [Abstract][Full Text] [Related]
20. Unlocking Double Redox Reaction of Metal-Organic Framework for Aqueous Zinc-Ion Battery. Deng S; Xu B; Zhao J; Kan CW; Liu X Angew Chem Int Ed Engl; 2024 Apr; 63(17):e202401996. PubMed ID: 38445364 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]