These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 31893709)

  • 1. Impaired frequency selectivity and sensitivity to temporal fine structure, but not envelope cues, in children with mild-to-moderate sensorineural hearing loss.
    Halliday LF; Rosen S; Tuomainen O; Calcus A
    J Acoust Soc Am; 2019 Dec; 146(6):4299. PubMed ID: 31893709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationship between sensitivity to temporal fine structure and spoken language abilities in children with mild-to-moderate sensorineural hearing loss.
    Cabrera L; Halliday LF
    J Acoust Soc Am; 2020 Nov; 148(5):3334. PubMed ID: 33261401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suprathreshold auditory processing and speech perception in noise: hearing-impaired and normal-hearing listeners.
    Summers V; Makashay MJ; Theodoroff SM; Leek MR
    J Am Acad Audiol; 2013 Apr; 24(4):274-92. PubMed ID: 23636209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Auditory processing deficits are sometimes necessary and sometimes sufficient for language difficulties in children: Evidence from mild to moderate sensorineural hearing loss.
    Halliday LF; Tuomainen O; Rosen S
    Cognition; 2017 Sep; 166():139-151. PubMed ID: 28577444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding excessive SNR loss in hearing-impaired listeners.
    Grant KW; Walden TC
    J Am Acad Audiol; 2013 Apr; 24(4):258-73; quiz 337-8. PubMed ID: 23636208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Auditory models of suprathreshold distortion and speech intelligibility in persons with impaired hearing.
    Bernstein JG; Summers V; Grassi E; Grant KW
    J Am Acad Audiol; 2013 Apr; 24(4):307-28. PubMed ID: 23636211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of minimal/mild hearing loss on children's speech understanding in a simulated classroom.
    Lewis DE; Valente DL; Spalding JL
    Ear Hear; 2015 Jan; 36(1):136-44. PubMed ID: 25170780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of age and cochlear hearing loss on temporal fine structure sensitivity, frequency selectivity, and speech reception in noise.
    Hopkins K; Moore BC
    J Acoust Soc Am; 2011 Jul; 130(1):334-49. PubMed ID: 21786903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cognitive Abilities Contribute to Spectro-Temporal Discrimination in Children Who Are Hard of Hearing.
    Kirby BJ; Spratford M; Klein KE; McCreery RW
    Ear Hear; 2019; 40(3):645-650. PubMed ID: 30130295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of sensorineural hearing loss on temporal coding of harmonic and inharmonic tone complexes in the auditory nerve.
    Kale S; Micheyl C; Heinz MG
    Adv Exp Med Biol; 2013; 787():109-18. PubMed ID: 23716215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relative contributions of temporal envelope and fine structure cues to lexical tone recognition in hearing-impaired listeners.
    Wang S; Xu L; Mannell R
    J Assoc Res Otolaryngol; 2011 Dec; 12(6):783-94. PubMed ID: 21833816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Consonant identification in noise using Hilbert-transform temporal fine-structure speech and recovered-envelope speech for listeners with normal and impaired hearing.
    Léger AC; Reed CM; Desloge JG; Swaminathan J; Braida LD
    J Acoust Soc Am; 2015 Jul; 138(1):389-403. PubMed ID: 26233038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectro-temporal modulation detection in children.
    Kirby BJ; Browning JM; Brennan MA; Spratford M; McCreery RW
    J Acoust Soc Am; 2015 Nov; 138(5):EL465-8. PubMed ID: 26627815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cortical auditory-evoked potentials (CAEPs) in adults in response to filtered speech stimuli.
    Carter L; Dillon H; Seymour J; Seeto M; Van Dun B
    J Am Acad Audiol; 2013 Oct; 24(9):807-22. PubMed ID: 24224988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suprathreshold auditory processing deficits in noise: Effects of hearing loss and age.
    Kortlang S; Mauermann M; Ewert SD
    Hear Res; 2016 Jan; 331():27-40. PubMed ID: 26471199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Speech intelligibility benefits of hearing AIDS at various input levels.
    Kuk F; Lau CC; Korhonen P; Crose B
    J Am Acad Audiol; 2015 Mar; 26(3):275-88. PubMed ID: 25751695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Relative Contributions of Temporal Envelope and Fine Structure to Mandarin Lexical Tone Perception in Auditory Neuropathy Spectrum Disorder.
    Wang S; Dong R; Liu D; Zhang L; Xu L
    Adv Exp Med Biol; 2016; 894():241-248. PubMed ID: 27080664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human Frequency Following Response: Neural Representation of Envelope and Temporal Fine Structure in Listeners with Normal Hearing and Sensorineural Hearing Loss.
    Ananthakrishnan S; Krishnan A; Bartlett E
    Ear Hear; 2016; 37(2):e91-e103. PubMed ID: 26583482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Effects of Static and Moving Spectral Ripple Sensitivity on Unaided and Aided Speech Perception in Noise.
    Miller CW; Bernstein JGW; Zhang X; Wu YH; Bentler RA; Tremblay K
    J Speech Lang Hear Res; 2018 Dec; 61(12):3113-3126. PubMed ID: 30515519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of recovered envelope cues in the identification of temporal-fine-structure speech for hearing-impaired listeners.
    Léger AC; Desloge JG; Braida LD; Swaminathan J
    J Acoust Soc Am; 2015 Jan; 137(1):505-8. PubMed ID: 25618081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.