BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 31893753)

  • 1. Comparison of volitional opposing and following responses across speakers with different vocal histories.
    Patel S; Gao L; Wang S; Gou C; Manes J; Robin DA; Larson CR
    J Acoust Soc Am; 2019 Dec; 146(6):4244. PubMed ID: 31893753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neurophysiological evidence of differential mechanisms involved in producing opposing and following responses to altered auditory feedback.
    Li W; Chen Z; Liu P; Zhang B; Huang D; Liu H
    Clin Neurophysiol; 2013 Nov; 124(11):2161-71. PubMed ID: 23751154
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compensation for pitch-shifted auditory feedback during the production of Mandarin tone sequences.
    Xu Y; Larson CR; Bauer JJ; Hain TC
    J Acoust Soc Am; 2004 Aug; 116(2):1168-78. PubMed ID: 15376682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding the mechanisms underlying voluntary responses to pitch-shifted auditory feedback.
    Patel S; Nishimura C; Lodhavia A; Korzyukov O; Parkinson A; Robin DA; Larson CR
    J Acoust Soc Am; 2014 May; 135(5):3036-44. PubMed ID: 24815283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Voice F0 responses to pitch-shifted voice feedback during English speech.
    Chen SH; Liu H; Xu Y; Larson CR
    J Acoust Soc Am; 2007 Feb; 121(2):1157-63. PubMed ID: 17348536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of Involuntary and Volitional Responses to Pitch-Shifted Auditory Feedback: Evidence for Tone Speakers' Flexibility to Switch Between Opposing and Following Responses.
    Ning LH
    J Speech Lang Hear Res; 2022 Jun; 65(6):2160-2186. PubMed ID: 35537117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compensatory responses to loudness-shifted voice feedback during production of Mandarin speech.
    Liu H; Zhang Q; Xu Y; Larson CR
    J Acoust Soc Am; 2007 Oct; 122(4):2405-12. PubMed ID: 17902874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sex-related differences in vocal responses to pitch feedback perturbations during sustained vocalization.
    Chen Z; Liu P; Jones JA; Huang D; Liu H
    J Acoust Soc Am; 2010 Dec; 128(6):EL355-60. PubMed ID: 21218857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superimposition of speaking voice characteristics and phonetograms in untrained and trained vocal groups.
    Awan SN
    J Voice; 1993 Mar; 7(1):30-7. PubMed ID: 8353617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of Fundamental Frequency in Dysphonic Patients During Phonation and Speech.
    Ziethe A; Petermann S; Hoppe U; Greiner N; Brüning M; Bohr C; Döllinger M
    J Voice; 2019 Nov; 33(6):851-859. PubMed ID: 30143332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vocal and Neural Responses to Unexpected Changes in Voice Pitch Auditory Feedback During Register Transitions.
    Patel S; Lodhavia A; Frankford S; Korzyukov O; Larson CR
    J Voice; 2016 Nov; 30(6):772.e33-772.e40. PubMed ID: 26739860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Opposing and following vocal responses to pitch-shifted auditory feedback: evidence for different mechanisms of voice pitch control.
    Behroozmand R; Korzyukov O; Sattler L; Larson CR
    J Acoust Soc Am; 2012 Oct; 132(4):2468-77. PubMed ID: 23039441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ERP correlates of language-specific processing of auditory pitch feedback during self-vocalization.
    Chen Z; Liu P; Wang EQ; Larson CR; Huang D; Liu H
    Brain Lang; 2012 Apr; 121(1):25-34. PubMed ID: 22377260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Voice F0 responses to manipulations in pitch feedback.
    Burnett TA; Freedland MB; Larson CR; Hain TC
    J Acoust Soc Am; 1998 Jun; 103(6):3153-61. PubMed ID: 9637026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial pitch changing in auditory feedback as a possible method in voice training and therapy.
    Laukkanen AM
    Folia Phoniatr Logop; 1994; 46(2):86-96. PubMed ID: 8173617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Suppression of vocal responses to auditory perturbation with real-time visual feedback.
    Ning LH; Loucks TM; Shih C
    J Acoust Soc Am; 2018 Jun; 143(6):3698. PubMed ID: 29960493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Age-related differences in vocal responses to pitch feedback perturbations: a preliminary study.
    Liu H; Russo NM; Larson CR
    J Acoust Soc Am; 2010 Feb; 127(2):1042-6. PubMed ID: 20136225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptation to pitch-altered feedback is independent of one's own voice pitch sensitivity.
    Alemi R; Lehmann A; Deroche MLD
    Sci Rep; 2020 Oct; 10(1):16860. PubMed ID: 33033324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Accompanying Effect in Responses to Auditory Perturbations: Unconscious Vocal Adjustments to Unperturbed Parameters.
    Ning LH; Hui TC
    J Speech Lang Hear Res; 2024 Jun; 67(6):1731-1751. PubMed ID: 38754028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural networks involved in voluntary and involuntary vocal pitch regulation in experienced singers.
    Zarate JM; Wood S; Zatorre RJ
    Neuropsychologia; 2010 Jan; 48(2):607-18. PubMed ID: 19896958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.