These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 31893913)

  • 1. Charge-transfer plasmons with narrow conductive molecular bridges: A quantum-classical theory.
    Fedorov AS; Krasnov PO; Visotin MA; Tomilin FN; Polyutov SP; Ågren H
    J Chem Phys; 2019 Dec; 151(24):244125. PubMed ID: 31893913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Charge transfer plasmons in the arrays of nanoparticles connected by conductive linkers.
    Fedorov AS; Visotin MA; Gerasimov VS; Polyutov SP; Avramov PA
    J Chem Phys; 2021 Feb; 154(8):084123. PubMed ID: 33639747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Charge-transfer plasmons of complex nanoparticle arrays connected by conductive molecular bridges.
    Fedorov AS; Visotin MA; Eremkin EV; Krasnov PO; Ågren H; Polyutov SP
    Phys Chem Chem Phys; 2022 Aug; 24(32):19531-19540. PubMed ID: 35938445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A hybrid atomistic electrodynamics-quantum mechanical approach for simulating surface-enhanced Raman scattering.
    Payton JL; Morton SM; Moore JE; Jensen L
    Acc Chem Res; 2014 Jan; 47(1):88-99. PubMed ID: 23965411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmons: untangling the classical, experimental, and quantum mechanical definitions.
    Gieseking RLM
    Mater Horiz; 2022 Jan; 9(1):25-42. PubMed ID: 34608479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface plasmons in quantum-sized noble-metal clusters: TDDFT quantum calculations and the classical picture of charge oscillations.
    Weissker HC; López-Lozano X
    Phys Chem Chem Phys; 2015 Nov; 17(42):28379-86. PubMed ID: 26104995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal nanoparticle plasmons operating within a quantum lifetime.
    Taşgın ME
    Nanoscale; 2013 Sep; 5(18):8616-24. PubMed ID: 23897124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamical coupling of plasmons and molecular excitations by hybrid quantum/classical calculations: time-domain approach.
    Sakko A; Rossi TP; Nieminen RM
    J Phys Condens Matter; 2014 Aug; 26(31):315013. PubMed ID: 25028486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-Dimensional Plasmons in Laterally Confined 2D Electron Systems.
    Zagorodnev IV; Zabolotnykh AA; Rodionov DA; Volkov VA
    Nanomaterials (Basel); 2023 Mar; 13(6):. PubMed ID: 36985869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Novel Metal Nanoparticles-Graphene Nanodisks-Quantum Dots Hybrid-System-Based Spaser.
    Tohari MM; Lyras A; S AlSalhi M
    Nanomaterials (Basel); 2020 Feb; 10(3):. PubMed ID: 32120985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intersubband plasmons in the quantum limit in gated and aligned carbon nanotubes.
    Yanagi K; Okada R; Ichinose Y; Yomogida Y; Katsutani F; Gao W; Kono J
    Nat Commun; 2018 Mar; 9(1):1121. PubMed ID: 29549341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmon damping depends on the chemical nature of the nanoparticle interface.
    Foerster B; Spata VA; Carter EA; Sönnichsen C; Link S
    Sci Adv; 2019 Mar; 5(3):eaav0704. PubMed ID: 30915394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substrate-mediated charge transfer plasmons in simple and complex nanoparticle clusters.
    Wang Y; Li Z; Zhao K; Sobhani A; Zhu X; Fang Z; Halas NJ
    Nanoscale; 2013 Oct; 5(20):9897-901. PubMed ID: 23979142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmon Character Index: An Accurate and Efficient Metric for Identifying and Quantifying Plasmons in Molecules.
    Langford J; Xu X; Yang Y
    J Phys Chem Lett; 2021 Sep; 12(38):9391-9397. PubMed ID: 34551254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A generalized non-local optical response theory for plasmonic nanostructures.
    Mortensen NA; Raza S; Wubs M; Søndergaard T; Bozhevolnyi SI
    Nat Commun; 2014 May; 5():3809. PubMed ID: 24787630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical Interface Damping Depends on Electrons Reaching the Surface.
    Foerster B; Joplin A; Kaefer K; Celiksoy S; Link S; Sönnichsen C
    ACS Nano; 2017 Mar; 11(3):2886-2893. PubMed ID: 28301133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coherent resonance of quantum plasmons in the graphene-gold cluster hybrid system.
    Zhang K; Zhang H; Li C
    Phys Chem Chem Phys; 2015 May; 17(18):12051-5. PubMed ID: 25874280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Charge Transfer Plasmons: Optical Frequency Conductances and Tunable Infrared Resonances.
    Wen F; Zhang Y; Gottheim S; King NS; Zhang Y; Nordlander P; Halas NJ
    ACS Nano; 2015 Jun; 9(6):6428-35. PubMed ID: 25986388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum finite-size effects in graphene plasmons.
    Thongrattanasiri S; Manjavacas A; García de Abajo FJ
    ACS Nano; 2012 Feb; 6(2):1766-75. PubMed ID: 22217250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.