These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 31893925)

  • 1. Accurate calculation of zero point energy from molecular dynamics simulations of liquids and their mixtures.
    Tiwari A; Honingh C; Ensing B
    J Chem Phys; 2019 Dec; 151(24):244124. PubMed ID: 31893925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid determination of entropy and free energy of mixtures from molecular dynamics simulations with the two-phase thermodynamic model.
    Lai PK; Hsieh CM; Lin ST
    Phys Chem Chem Phys; 2012 Nov; 14(43):15206-13. PubMed ID: 23041952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient Computation of Entropy and Other Thermodynamic Properties for Two-Dimensional Systems Using Two-Phase Thermodynamic Model.
    Pannir Sivajothi SS; Lin ST; Maiti PK
    J Phys Chem B; 2019 Jan; 123(1):180-193. PubMed ID: 30525633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Absolute Entropy and Energy of Carbon Dioxide Using the Two-Phase Thermodynamic Model.
    Huang SN; Pascal TA; Goddard WA; Maiti PK; Lin ST
    J Chem Theory Comput; 2011 Jun; 7(6):1893-901. PubMed ID: 26596450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamics of liquids: standard molar entropies and heat capacities of common solvents from 2PT molecular dynamics.
    Pascal TA; Lin ST; Goddard WA
    Phys Chem Chem Phys; 2011 Jan; 13(1):169-81. PubMed ID: 21103600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-phase thermodynamic model for efficient and accurate absolute entropy of water from molecular dynamics simulations.
    Lin ST; Maiti PK; Goddard WA
    J Phys Chem B; 2010 Jun; 114(24):8191-8. PubMed ID: 20504009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diffusive and quantum effects of water properties in different states of matter.
    Yeh KY; Huang SN; Chen LJ; Lin ST
    J Chem Phys; 2014 Jul; 141(4):044502. PubMed ID: 25084921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zero-Point Energy Constraint for Unimolecular Dissociation Reactions. Giving Trajectories Multiple Chances To Dissociate Correctly.
    Paul AK; Hase WL
    J Phys Chem A; 2016 Jan; 120(3):372-8. PubMed ID: 26738691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Hessian-Free Method to Prevent Zero-Point Energy Leakage in Classical Trajectories.
    Mukherjee S; Barbatti M
    J Chem Theory Comput; 2022 Jul; 18(7):4109-4116. PubMed ID: 35679615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate schemes for calculation of thermodynamic properties of liquid mixtures from molecular dynamics simulations.
    Caro MA; Laurila T; Lopez-Acevedo O
    J Chem Phys; 2016 Dec; 145(24):244504. PubMed ID: 28049340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redox Potentials from Ab Initio Molecular Dynamics and Explicit Entropy Calculations: Application to Transition Metals in Aqueous Solution.
    Caro MA; Lopez-Acevedo O; Laurila T
    J Chem Theory Comput; 2017 Aug; 13(8):3432-3441. PubMed ID: 28715635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Absolute thermodynamic properties of molten salts using the two-phase thermodynamic (2PT) superpositioning method.
    Wang J; Chakraborty B; Eapen J
    Phys Chem Chem Phys; 2014 Feb; 16(7):3062-9. PubMed ID: 24398710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and dynamics of the hydration shells of the Zn(2+) ion from ab initio molecular dynamics and combined ab initio and classical molecular dynamics simulations.
    Cauët E; Bogatko S; Weare JH; Fulton JL; Schenter GK; Bylaska EJ
    J Chem Phys; 2010 May; 132(19):194502. PubMed ID: 20499974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical Reaction Rates from Ring Polymer Molecular Dynamics: Zero Point Energy Conservation in Mu + H2 → MuH + H.
    Pérez de Tudela R; Aoiz FJ; Suleimanov YV; Manolopoulos DE
    J Phys Chem Lett; 2012 Feb; 3(4):493-7. PubMed ID: 26286053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nuclear Quantum Effects from the Analysis of Smoothed Trajectories: Pilot Study for Water.
    Berta D; Ferenc D; Bakó I; Madarász Á
    J Chem Theory Comput; 2020 May; 16(5):3316-3334. PubMed ID: 32268067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zero-point energy conservation in classical trajectory simulations: Application to H
    Lee KLK; Quinn MS; Kolmann SJ; Kable SH; Jordan MJT
    J Chem Phys; 2018 May; 148(19):194113. PubMed ID: 30307216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum wavepacket ab initio molecular dynamics: an approach for computing dynamically averaged vibrational spectra including critical nuclear quantum effects.
    Sumner I; Iyengar SS
    J Phys Chem A; 2007 Oct; 111(41):10313-24. PubMed ID: 17894476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mixed quantum/classical investigation of the photodissociation of NH3(A) and a practical method for maintaining zero-point energy in classical trajectories.
    Bonhommeau D; Truhlar DG
    J Chem Phys; 2008 Jul; 129(1):014302. PubMed ID: 18624475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum effects on vibrational and electronic spectra of hydrazine studied by "on-the-fly" ab initio ring polymer molecular dynamics.
    Kaczmarek A; Shiga M; Marx D
    J Phys Chem A; 2009 Mar; 113(10):1985-94. PubMed ID: 19199678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zero-point energy effects in anion solvation shells.
    Habershon S
    Phys Chem Chem Phys; 2014 May; 16(19):9154-60. PubMed ID: 24709978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.