These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 31893971)

  • 1. A distributional and theoretical analysis of reaction time in the reversal task across adulthood.
    Leclaire KN; Osmon DC; Driscoll I
    J Clin Exp Neuropsychol; 2020 Mar; 42(2):199-207. PubMed ID: 31893971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversal learning in young and middle-age neurotypicals: Individual difference reaction time considerations.
    Osmon DC; Leclaire KN; Driscoll I; Zolliecoffer CJ
    J Clin Exp Neuropsychol; 2020 Nov; 42(9):902-913. PubMed ID: 33073666
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reward-related reversal learning after surgical excisions in orbito-frontal or dorsolateral prefrontal cortex in humans.
    Hornak J; O'Doherty J; Bramham J; Rolls ET; Morris RG; Bullock PR; Polkey CE
    J Cogn Neurosci; 2004 Apr; 16(3):463-78. PubMed ID: 15072681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aerobic Fitness and Intraindividual Reaction Time Variability in Middle and Old Age.
    Bauermeister S; Bunce D
    J Gerontol B Psychol Sci Soc Sci; 2016 May; 71(3):431-8. PubMed ID: 25352519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adult age differences in wrap-up during sentence comprehension: evidence from ex-Gaussian distributional analyses of reading time.
    Payne BR; Stine-Morrow EA
    Psychol Aging; 2014 Jun; 29(2):213-28. PubMed ID: 24955990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brain areas consistently linked to individual differences in perceptual decision-making in younger as well as older adults before and after training.
    Kühn S; Schmiedek F; Schott B; Ratcliff R; Heinze HJ; Düzel E; Lindenberger U; Lövden M
    J Cogn Neurosci; 2011 Sep; 23(9):2147-58. PubMed ID: 20807055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frontal, Striatal, and Medial Temporal Sensitivity to Value Distinguishes Risk-Taking from Risk-Aversive Older Adults during Decision Making.
    Goh JO; Su YS; Tang YJ; McCarrey AC; Tereshchenko A; Elkins W; Resnick SM
    J Neurosci; 2016 Dec; 36(49):12498-12509. PubMed ID: 27927964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural and psychological maturation of decision-making in adolescence and young adulthood.
    Christakou A; Gershman SJ; Niv Y; Simmons A; Brammer M; Rubia K
    J Cogn Neurosci; 2013 Nov; 25(11):1807-23. PubMed ID: 23859647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinct linear and non-linear trajectories of reward and punishment reversal learning during development: relevance for dopamine's role in adolescent decision making.
    van der Schaaf ME; Warmerdam E; Crone EA; Cools R
    Dev Cogn Neurosci; 2011 Oct; 1(4):578-90. PubMed ID: 22436570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of healthy aging and early stage dementia of the Alzheimer's type on components of response time distributions in three attention tasks.
    Tse CS; Balota DA; Yap MJ; Duchek JM; McCabe DP
    Neuropsychology; 2010 May; 24(3):300-15. PubMed ID: 20438208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial reversal learning is impaired by age in pet dogs.
    Mongillo P; Araujo JA; Pitteri E; Carnier P; Adamelli S; Regolin L; Marinelli L
    Age (Dordr); 2013 Dec; 35(6):2273-82. PubMed ID: 23529504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential frontal-striatal and paralimbic activity during reversal learning in major depressive disorder and obsessive-compulsive disorder.
    Remijnse PL; Nielen MM; van Balkom AJ; Hendriks GJ; Hoogendijk WJ; Uylings HB; Veltman DJ
    Psychol Med; 2009 Sep; 39(9):1503-18. PubMed ID: 19171077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for executive dysfunction in autism.
    Hughes C; Russell J; Robbins TW
    Neuropsychologia; 1994 Apr; 32(4):477-92. PubMed ID: 8047253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-Gaussian Distributional Analyses of Reaction Times (RT): Improvements that Increase Efficacy of RT Tasks for Describing Cognitive Processes.
    Osmon DC; Kazakov D; Santos O; Kassel MT
    Neuropsychol Rev; 2018 Sep; 28(3):359-376. PubMed ID: 30178182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid tryptophan depletion improves decision-making cognition in healthy humans without affecting reversal learning or set shifting.
    Talbot PS; Watson DR; Barrett SL; Cooper SJ
    Neuropsychopharmacology; 2006 Jul; 31(7):1519-25. PubMed ID: 16319909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studying the dynamics of visual search behavior using RT hazard and micro-level speed-accuracy tradeoff functions: A role for recurrent object recognition and cognitive control processes.
    Panis S; Moran R; Wolkersdorfer MP; Schmidt T
    Atten Percept Psychophys; 2020 Feb; 82(2):689-714. PubMed ID: 31942704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Size and reversal learning in the beagle dog as a measure of executive function and inhibitory control in aging.
    Tapp PD; Siwak CT; Estrada J; Head E; Muggenburg BA; Cotman CW; Milgram NW
    Learn Mem; 2003; 10(1):64-73. PubMed ID: 12551965
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased intra-individual reaction time variability in attention-deficit/hyperactivity disorder across response inhibition tasks with different cognitive demands.
    Vaurio RG; Simmonds DJ; Mostofsky SH
    Neuropsychologia; 2009 Oct; 47(12):2389-96. PubMed ID: 19552927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resting heart rate variability is associated with ex-Gaussian metrics of intra-individual reaction time variability.
    Spangler DP; Williams DP; Speller LF; Brooks JR; Thayer JF
    Int J Psychophysiol; 2018 Mar; 125():10-16. PubMed ID: 29408149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrating impairments in reaction time and executive function using a diffusion model framework.
    Karalunas SL; Huang-Pollock CL
    J Abnorm Child Psychol; 2013 Jul; 41(5):837-50. PubMed ID: 23334775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.