These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 31894443)
21. Fluensulfone and 1,3-dichloroprene for plant-parasitic nematode management in potato production. Grabau ZJ; Noling JW; Navia Gine PA J Nematol; 2019; 51():1-12. PubMed ID: 31339250 [TBL] [Abstract][Full Text] [Related]
22. Euseiusfinlandicus (Acari: Phytoseiidae) as a potential biocontrol agent against Tetranychus urticae (Acari: Tetranychidae): life history and feeding habits on three different types of food. Abdalla AA; Zhang Z; Masters GJ; McNeill S Exp Appl Acarol; 2001; 25(10-11):833-47. PubMed ID: 12455874 [TBL] [Abstract][Full Text] [Related]
23. Ectoparasitic mites and their Drosophila hosts. Perez-Leanos A; Loustalot-Laclette MR; Nazario-Yepiz N; Markow TA Fly (Austin); 2017 Jan; 11(1):10-18. PubMed ID: 27540774 [TBL] [Abstract][Full Text] [Related]
24. Gene silencing in root lesion nematodes (Pratylenchus spp.) significantly reduces reproduction in a plant host. Tan JA; Jones MG; Fosu-Nyarko J Exp Parasitol; 2013 Feb; 133(2):166-78. PubMed ID: 23201220 [TBL] [Abstract][Full Text] [Related]
25. Effects of temperature on the adults and progeny of the predaceous mite Lasioseius japonicus (Acari: Blattisociidae) fed on the cereal mite Tyrophagus putrescentiae (Acari: Acaridae). Zhang N; Smith CL; Yin Z; Yan Y; Xie L Exp Appl Acarol; 2022 Apr; 86(4):499-515. PubMed ID: 35389177 [TBL] [Abstract][Full Text] [Related]
26. Molecular detection of predation by soil micro-arthropods on nematodes. Read DS; Sheppard SK; Bruford MW; Glen DM; Symondson WO Mol Ecol; 2006 Jun; 15(7):1963-72. PubMed ID: 16689911 [TBL] [Abstract][Full Text] [Related]
27. Impact of factitious foods and prey on the oviposition of the predatory mites Gaeolaelaps aculeifer and Stratiolaelaps scimitus (Acari: Laelapidae). Navarro-Campos C; Wäckers FL; Pekas A Exp Appl Acarol; 2016 Sep; 70(1):69-78. PubMed ID: 27388446 [TBL] [Abstract][Full Text] [Related]
29. How promising is Lasioseius floridensis as a control agent of Polyphagotarsonemus latus? Britto EP; Gago E; de Moraes GJ Exp Appl Acarol; 2012 Mar; 56(3):221-31. PubMed ID: 22273817 [TBL] [Abstract][Full Text] [Related]
30. Interactions between Escherichia coli and the plant-parasitic nematode Meloidogyne javanica. Maghodia AB; Spiegel Y; Sela S J Appl Microbiol; 2008 Dec; 105(6):1810-6. PubMed ID: 19016981 [TBL] [Abstract][Full Text] [Related]
31. Compatibility of two predator species for biological control of the two-spotted spider mite. Fonseca MM; Pallini A; Marques PH; Lima E; Janssen A Exp Appl Acarol; 2020 Mar; 80(3):409-422. PubMed ID: 32030606 [TBL] [Abstract][Full Text] [Related]
32. Additive interaction between a root-knot nematode Meloidogyne javanica and a root-feeding flea beetle Longitarsus bethae on their host Lantana camara. Musedeli JN; Simelane DO; Hill MP; Marais M Pest Manag Sci; 2020 Jan; 76(1):198-204. PubMed ID: 31119815 [TBL] [Abstract][Full Text] [Related]
34. Biological control of sciarid and phorid pests of mushroom with predatory mites from the genus Hypoaspis(Acari: Hypoaspidae) and the entomopathogenic nematode Steinernema feltiae. Jess S; Bingham JF Bull Entomol Res; 2004 Apr; 94(2):159-67. PubMed ID: 15153298 [TBL] [Abstract][Full Text] [Related]
35. Characterization and Effect of a Nematophagous Fungus Mo YX; Kan YZ; Jia LM; Cao XT; Sikandar A; Wu HY Phytopathology; 2024 Mar; 114(3):618-629. PubMed ID: 37889191 [TBL] [Abstract][Full Text] [Related]
36. Associate plant parasitic nematodes to weed species in some newly reclaimed lands. AbdelRazek GM; Balah MA Sci Rep; 2023 Dec; 13(1):21923. PubMed ID: 38081941 [TBL] [Abstract][Full Text] [Related]
37. Laboratory trials to infect insects and nematodes by some acaropathogenic Hirsutella strains (Mycota: Clavicipitaceous anamorphs). Bałazy S; Wrzosek M; Sosnowska D; Tkaczuk C; Muszewska A J Invertebr Pathol; 2008 Feb; 97(2):103-13. PubMed ID: 17920621 [TBL] [Abstract][Full Text] [Related]
38. Potential of astigmatid mites (Acari: Astigmatina) as prey for rearing edaphic predatory mites of the families Laelapidae and Rhodacaridae (Acari: Mesostigmata). Barbosa MF; de Moraes GJ Exp Appl Acarol; 2016 Jul; 69(3):289-96. PubMed ID: 27115501 [TBL] [Abstract][Full Text] [Related]
39. Laboratory studies on the use of two new arenas to evaluate the impact of the predatory mites Blattisocius tarsalis and Cheyletus eruditus on residual populations of the stored product mite Acarus siro. Thind BB; Ford HL Exp Appl Acarol; 2006; 38(2-3):167-80. PubMed ID: 16596350 [TBL] [Abstract][Full Text] [Related]
40. Predation by Allothrombium pulvinum on the spider mites Tetranychus urticae and Amphitetranychus viennensis: predation rate, prey preference and functional response. Hosseini M; Hatami B; Saboori A; Allahyari H; Ashouri A Exp Appl Acarol; 2005; 37(3-4):173-81. PubMed ID: 16323049 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]