These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 31894817)

  • 1. Optical tweezers-based characterisation of gold core-satellite plasmonic nano-assemblies incorporating thermo-responsive polymers.
    Han F; Armstrong T; Andres-Arroyo A; Bennett D; Soeriyadi A; Alinezhad Chamazketi A; Bakthavathsalam P; Tilley RD; Gooding JJ; Reece PJ
    Nanoscale; 2020 Jan; 12(3):1680-1687. PubMed ID: 31894817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stand-off trapping and manipulation of sub-10 nm objects and biomolecules using opto-thermo-electrohydrodynamic tweezers.
    Hong C; Yang S; Ndukaife JC
    Nat Nanotechnol; 2020 Nov; 15(11):908-913. PubMed ID: 32868919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversible Thermoresponsive Plasmonic Core-Satellite Nanostructures That Exhibit Both Expansion and Contraction (UCST and LCST).
    Han F; Soeriyadi AH; Gooding JJ
    Macromol Rapid Commun; 2018 Dec; 39(23):e1800451. PubMed ID: 30252981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self assembly of plasmonic core-satellite nano-assemblies mediated by hyperbranched polymer linkers.
    Dey P; Zhu S; Thurecht KJ; Fredericks PM; Blakey I
    J Mater Chem B; 2014 May; 2(19):2827-2837. PubMed ID: 32261477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laser heating tunability by off-resonant irradiation of gold nanoparticles.
    Hormeño S; Gregorio-Godoy P; Pérez-Juste J; Liz-Marzán LM; Juárez BH; Arias-Gonzalez JR
    Small; 2014 Jan; 10(2):376-84. PubMed ID: 24106098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intrinsic heating in optically trapped Au nanoparticles measured by dark-field spectroscopy.
    Andres-Arroyo A; Wang F; Toe WJ; Reece P
    Biomed Opt Express; 2015 Sep; 6(9):3646-54. PubMed ID: 26417530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermoresponsive plasmonic core-satellite nanostructures with reversible, temperature sensitive optical properties.
    Han F; Vivekchand SRC; Soeriyadi AH; Zheng Y; Gooding JJ
    Nanoscale; 2018 Mar; 10(9):4284-4290. PubMed ID: 29442113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stimuli-responsive plasmonic core-satellite hybrid nanostructures with tunable nanogaps.
    Hwang EY; Lee JH; Kang MJ; Lim DW
    J Mater Chem B; 2023 Feb; 11(8):1692-1704. PubMed ID: 36723160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tuning the Sensing Performance of Multilayer Plasmonic Core-Satellite Assemblies for Rapid Detection of Targets from Lysed Cells.
    Le NH; Nguyen BK; Ye G; Peng C; Chen JIL
    ACS Sens; 2017 Nov; 2(11):1578-1583. PubMed ID: 29130305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ordered Arrangement and Optical Properties of Silica-Stabilized Gold Nanoparticle-PNIPAM Core-Satellite Clusters for Sensitive Raman Detection.
    Herrmann JF; Kretschmer F; Hoeppener S; Höppener C; Schubert US
    Small; 2017 Oct; 13(39):. PubMed ID: 28834089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical trapping of single nano-size particles using a plasmonic nanocavity.
    Zhang J; Lu F; Zhang W; Yu W; Zhu W; Premaratne M; Mei T; Xiao F; Zhao J
    J Phys Condens Matter; 2020 Aug; 32(47):. PubMed ID: 32870814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tunable optical forces enhanced by plasmonic modes hybridization in optical trapping of gold nanorods with plasmonic nanocavity.
    Huang WH; Li SF; Xu HT; Xiang ZX; Long YB; Deng HD
    Opt Express; 2018 Mar; 26(5):6202-6213. PubMed ID: 29529812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Opto-Thermophoretic Attraction, Trapping, and Dynamic Manipulation of Lipid Vesicles.
    Hill EH; Li J; Lin L; Liu Y; Zheng Y
    Langmuir; 2018 Nov; 34(44):13252-13262. PubMed ID: 30350700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical manipulation of individual strongly absorbing platinum nanoparticles.
    Samadi A; Bendix PM; Oddershede LB
    Nanoscale; 2017 Nov; 9(46):18449-18455. PubMed ID: 29159358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-spherical gold nanoparticles trapped in optical tweezers: shape matters.
    Brzobohatý O; Šiler M; Trojek J; Chvátal L; Karásek V; Zemánek P
    Opt Express; 2015 Apr; 23(7):8179-89. PubMed ID: 25968657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermo-induced electromagnetic coupling in gold/polymer hybrid plasmonic structures probed by surface-enhanced raman scattering.
    Gehan H; Fillaud L; Chehimi MM; Aubard J; Hohenau A; Felidj N; Mangeney C
    ACS Nano; 2010 Nov; 4(11):6491-500. PubMed ID: 21028846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing Photothermal Effects on Optically Trapped Gold Nanorods by Simultaneous Plasmon Spectroscopy and Brownian Dynamics Analysis.
    Andrén D; Shao L; Odebo Länk N; Aćimović SS; Johansson P; Käll M
    ACS Nano; 2017 Oct; 11(10):10053-10061. PubMed ID: 28872830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A numerical study on the closed packed array of gold discs as an efficient dual mode plasmonic tweezers.
    Aqhili A; Darbari S
    Sci Rep; 2021 Oct; 11(1):20656. PubMed ID: 34667247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and Optical Properties of Active Polymer-Coated Plasmonic Nanostructures.
    Gehan H; Mangeney C; Aubard J; Lévi G; Hohenau A; Krenn JR; Lacaze E; Félidj N
    J Phys Chem Lett; 2011 Apr; 2(8):926-31. PubMed ID: 26295630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stable optical trapping and sensitive characterization of nanostructures using standing-wave Raman tweezers.
    Wu MY; Ling DX; Ling L; Li W; Li YQ
    Sci Rep; 2017 Feb; 7():42930. PubMed ID: 28211526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.