These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 31894974)

  • 21. Designing greener plasticizers: Effects of alkyl chain length and branching on the biodegradation of maleate based plasticizers.
    Erythropel HC; Brown T; Maric M; Nicell JA; Cooper DG; Leask RL
    Chemosphere; 2015 Sep; 134():106-12. PubMed ID: 25917507
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Variation in accumulation, transport, and distribution of phthalic acid esters (PAEs) in soil columns grown with low- and high-PAE accumulating rice cultivars.
    Wu Y; Chen XX; Zhu TK; Li X; Chen XH; Mo CH; Li YW; Cai QY; Wong MH
    Environ Sci Pollut Res Int; 2018 Jun; 25(18):17768-17780. PubMed ID: 29675815
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dermal bioaccessibility of plasticizers in indoor dust and clothing.
    Zeng D; Kang Y; Chen J; Li A; Chen W; Li Z; He L; Zhang Q; Luo J; Zeng L
    Sci Total Environ; 2019 Jul; 672():798-805. PubMed ID: 30978542
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficacy coefficient method assisted quadruple-activities 3D-QSAR pharmacophore model for application in environmentally friendly PAE molecular modification.
    Du M; Qiu Y; Li Q; Li Y
    Environ Sci Pollut Res Int; 2020 Jul; 27(19):24103-24114. PubMed ID: 32301091
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enzymatic hydrolysis of structurally diverse phthalic acid esters by porcine and bovine pancreatic cholesterol esterases.
    Saito T; Hong P; Tanabe R; Nagai K; Kato K
    Chemosphere; 2010 Dec; 81(11):1544-8. PubMed ID: 20822795
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biodegradability and biodegradation pathway of di-(2-ethylhexyl) phthalate by Burkholderia pyrrocinia B1213.
    Li J; Zhang J; Yadav MP; Li X
    Chemosphere; 2019 Jun; 225():443-450. PubMed ID: 30897469
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Qualitative Analysis of Additives in Plastic Marine Debris and Its New Products.
    Rani M; Shim WJ; Han GM; Jang M; Al-Odaini NA; Song YK; Hong SH
    Arch Environ Contam Toxicol; 2015 Oct; 69(3):352-66. PubMed ID: 26329499
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of Toxic Phthalate-Based Plasticizer on the Biodegradability of Polyhydroxyalkanoate.
    Chan CM; Lyons R; Dennis PG; Lant P; Pratt S; Laycock B
    Environ Sci Technol; 2022 Dec; 56(24):17732-17742. PubMed ID: 36480707
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Determination of phthalic acid diesters in human milk at low ppb levels.
    Zimmermann S; Gruber L; Schlummer M; Smolic S; Fromme H
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2012; 29(11):1780-90. PubMed ID: 22845555
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Endocrine disruption: In silico interactions between phthalate plasticizers and corticosteroid binding globulin.
    Sheikh IA; Beg MA
    J Appl Toxicol; 2017 Dec; 37(12):1471-1480. PubMed ID: 28677244
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of phthalic acid diesters, monoester, and other plasticizers in polyvinyl chloride household products in Japan.
    Kawakami T; Isama K; Matsuoka A
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(8):855-64. PubMed ID: 21714626
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phthalate and Organophosphate Plasticizers in Nail Polish: Evaluation of Labels and Ingredients.
    Young AS; Allen JG; Kim UJ; Seller S; Webster TF; Kannan K; Ceballos DM
    Environ Sci Technol; 2018 Nov; 52(21):12841-12850. PubMed ID: 30302996
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Toxicological assessment of phthalates and their alternatives using human keratinocytes.
    Kim H; Nam K; Oh S; Son S; Jeon D; Gye MC; Shin I
    Environ Res; 2019 Aug; 175():316-322. PubMed ID: 31146103
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chemical behavior of phthalates under abiotic conditions in landfills.
    Huang J; Nkrumah PN; Li Y; Appiah-Sefah G
    Rev Environ Contam Toxicol; 2013; 224():39-52. PubMed ID: 23232918
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Soil contamination by phthalate esters in Chinese intensive vegetable production systems with different modes of use of plastic film.
    Wang J; Luo Y; Teng Y; Ma W; Christie P; Li Z
    Environ Pollut; 2013 Sep; 180():265-73. PubMed ID: 23792387
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A novel biodegradation pathway of the endocrine-disruptor di(2-ethyl hexyl) phthalate by Pleurotus ostreatus based on quantum chemical investigation.
    Ahuactzin-Pérez M; Tlecuitl-Beristain S; García-Dávila J; Santacruz-Juárez E; González-Pérez M; Gutiérrez-Ruíz MC; Sánchez C
    Ecotoxicol Environ Saf; 2018 Jan; 147():494-499. PubMed ID: 28915396
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Selection of Group-Specific Phthalic Acid Esters Binding DNA Aptamers via Rationally Designed Target Immobilization and Applications for Ultrasensitive and Highly Selective Detection of Phthalic Acid Esters.
    Han Y; Diao D; Lu Z; Li X; Guo Q; Huo Y; Xu Q; Li Y; Cao S; Wang J; Wang Y; Zhao J; Li Z; He M; Luo Z; Lou X
    Anal Chem; 2017 May; 89(10):5270-5277. PubMed ID: 28414217
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biodegradation patterns of the endocrine disrupting pollutant di(2-ethyl hexyl) phthalate by Fusarium culmorum.
    González-Márquez A; Loera-Corral O; Santacruz-Juárez E; Tlécuitl-Beristain S; García-Dávila J; Viniegra-González G; Sánchez C
    Ecotoxicol Environ Saf; 2019 Apr; 170():293-299. PubMed ID: 30530181
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fate of four phthalate esters with presence of Karenia brevis: Uptake and biodegradation.
    Sun C; Zhang G; Zheng H; Liu N; Shi M; Luo X; Chen L; Li F; Hu S
    Aquat Toxicol; 2019 Jan; 206():81-90. PubMed ID: 30468977
    [TBL] [Abstract][Full Text] [Related]  

  • 40. PLHC-1 topminnow liver cells: An alternative model to investigate the toxicity of plastic additives in the aquatic environment.
    Pérez-Albaladejo E; Solís A; Bani I; Porte C
    Ecotoxicol Environ Saf; 2021 Jan; 208():111746. PubMed ID: 33396072
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.