These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 31895391)
1. Complementary behaviour of EDL and HER activity in functionalized graphene nanoplatelets. Puthirath AB; Shirodkar S; Fei M; Baburaj A; Kato K; Saju SK; Prasannachandran R; Chakingal N; Vajtai R; Yakobson BI; Ajayan PM Nanoscale; 2020 Jan; 12(3):1790-1800. PubMed ID: 31895391 [TBL] [Abstract][Full Text] [Related]
2. Noble metal-free hydrogen evolution catalysts for water splitting. Zou X; Zhang Y Chem Soc Rev; 2015 Aug; 44(15):5148-80. PubMed ID: 25886650 [TBL] [Abstract][Full Text] [Related]
3. Hybrid Microwave Annealing Synthesizes Highly Crystalline Nanostructures for (Photo)electrocatalytic Water Splitting. Zhang H; Lee JS Acc Chem Res; 2019 Nov; 52(11):3132-3142. PubMed ID: 31603645 [TBL] [Abstract][Full Text] [Related]
4. Double-Layer Graphene Outperforming Monolayer as Catalyst on Silicon Photocathode for Hydrogen Production. Sim U; Moon J; Lee J; An J; Ahn HY; Kim DJ; Jo I; Jeon C; Han S; Hong BH; Nam KT ACS Appl Mater Interfaces; 2017 Feb; 9(4):3570-3580. PubMed ID: 28075553 [TBL] [Abstract][Full Text] [Related]
5. Nitrogen-doped graphene/carbon nanotube hybrids: in situ formation on bifunctional catalysts and their superior electrocatalytic activity for oxygen evolution/reduction reaction. Tian GL; Zhao MQ; Yu D; Kong XY; Huang JQ; Zhang Q; Wei F Small; 2014 Jun; 10(11):2251-9. PubMed ID: 24574006 [TBL] [Abstract][Full Text] [Related]
6. Recent Advances in Electrocatalytic Hydrogen Evolution Using Nanoparticles. Zhu J; Hu L; Zhao P; Lee LYS; Wong KY Chem Rev; 2020 Jan; 120(2):851-918. PubMed ID: 31657904 [TBL] [Abstract][Full Text] [Related]
7. MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. Li Y; Wang H; Xie L; Liang Y; Hong G; Dai H J Am Chem Soc; 2011 May; 133(19):7296-9. PubMed ID: 21510646 [TBL] [Abstract][Full Text] [Related]
8. CoSe₂ and NiSe₂ Nanocrystals as Superior Bifunctional Catalysts for Electrochemical and Photoelectrochemical Water Splitting. Kwak IH; Im HS; Jang DM; Kim YW; Park K; Lim YR; Cha EH; Park J ACS Appl Mater Interfaces; 2016 Mar; 8(8):5327-34. PubMed ID: 26848805 [TBL] [Abstract][Full Text] [Related]
9. Double Perovskite Cobaltites Integrated in a Monolithic and Noble Metal-Free Photoelectrochemical Device for Efficient Water Splitting. Zhu J; Guđmundsdóttir JB; Strandbakke R; Both KG; Aarholt T; Carvalho PA; Sørby MH; Jensen IJT; Guzik MN; Norby T; Haug H; Chatzitakis A ACS Appl Mater Interfaces; 2021 May; 13(17):20313-20325. PubMed ID: 33904298 [TBL] [Abstract][Full Text] [Related]
10. MOF-Derived Noble Metal Free Catalysts for Electrochemical Water Splitting. Tao Z; Wang T; Wang X; Zheng J; Li X ACS Appl Mater Interfaces; 2016 Dec; 8(51):35390-35397. PubMed ID: 27966855 [TBL] [Abstract][Full Text] [Related]
11. Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide. Cabán-Acevedo M; Stone ML; Schmidt JR; Thomas JG; Ding Q; Chang HC; Tsai ML; He JH; Jin S Nat Mater; 2015 Dec; 14(12):1245-51. PubMed ID: 26366849 [TBL] [Abstract][Full Text] [Related]
12. Scalable synthesis of self-assembled bimetallic phosphide/N-doped graphene nanoflakes as an efficient electrocatalyst for overall water splitting. Yang D; Hou W; Lu Y; Zhang W; Chen Y Nanoscale; 2019 Jul; 11(27):12837-12845. PubMed ID: 31214672 [TBL] [Abstract][Full Text] [Related]
13. High Electrocatalytic Hydrogen Evolution Activity of an Anomalous Ruthenium Catalyst. Zheng Y; Jiao Y; Zhu Y; Li LH; Han Y; Chen Y; Jaroniec M; Qiao SZ J Am Chem Soc; 2016 Dec; 138(49):16174-16181. PubMed ID: 27960327 [TBL] [Abstract][Full Text] [Related]
14. Controllable synthesis of nickel sulfide nanocatalysts and their phase-dependent performance for overall water splitting. Zheng X; Han X; Zhang Y; Wang J; Zhong C; Deng Y; Hu W Nanoscale; 2019 Mar; 11(12):5646-5654. PubMed ID: 30865205 [TBL] [Abstract][Full Text] [Related]
15. Efficient oxygen reduction electrocatalyst based on edge-nitrogen-rich graphene nanoplatelets: toward a large-scale synthesis. Fu X; Jin J; Liu Y; Wei Z; Pan F; Zhang J ACS Appl Mater Interfaces; 2014 Mar; 6(6):3930-6. PubMed ID: 24598249 [TBL] [Abstract][Full Text] [Related]
16. Towards Versatile and Sustainable Hydrogen Production through Electrocatalytic Water Splitting: Electrolyte Engineering. Shinagawa T; Takanabe K ChemSusChem; 2017 Apr; 10(7):1318-1336. PubMed ID: 27984671 [TBL] [Abstract][Full Text] [Related]
17. A Metal-Free Electrode: From Biomass-Derived Carbon to Hydrogen. Ding Y; Greiner M; Schlögl R; Heumann S ChemSusChem; 2020 Aug; 13(16):4064-4068. PubMed ID: 32428374 [TBL] [Abstract][Full Text] [Related]
18. Coupled molybdenum carbide and reduced graphene oxide electrocatalysts for efficient hydrogen evolution. Li JS; Wang Y; Liu CH; Li SL; Wang YG; Dong LZ; Dai ZH; Li YF; Lan YQ Nat Commun; 2016 Apr; 7():11204. PubMed ID: 27032372 [TBL] [Abstract][Full Text] [Related]
19. Graphene Nanoarchitectonics: Recent Advances in Graphene-Based Electrocatalysts for Hydrogen Evolution Reaction. Huang H; Yan M; Yang C; He H; Jiang Q; Yang L; Lu Z; Sun Z; Xu X; Bando Y; Yamauchi Y Adv Mater; 2019 Nov; 31(48):e1903415. PubMed ID: 31496036 [TBL] [Abstract][Full Text] [Related]
20. Atomic-Scale Intercalation of Graphene Layers into MoSe Xiao D; Huang C; Luo Y; Tang K; Ruan Q; Wang G; Chu PK ACS Appl Mater Interfaces; 2020 Jan; 12(2):2460-2468. PubMed ID: 31877010 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]