These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 31895547)

  • 1. Pathway Complexity in Fuel-Driven DNA Nanostructures with Autonomous Reconfiguration of Multiple Dynamic Steady States.
    Deng J; Walther A
    J Am Chem Soc; 2020 Jan; 142(2):685-689. PubMed ID: 31895547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autonomous and Programmable Reorganization of DNA-Based Polymers Using Redox Chemistry.
    Gentile S; Del Grosso E; Prins LJ; Ricci F
    Chemistry; 2023 May; 29(30):e202300394. PubMed ID: 37076949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Switchable reconfiguration of nucleic acid nanostructures by stimuli-responsive DNA machines.
    Liu X; Lu CH; Willner I
    Acc Chem Res; 2014 Jun; 47(6):1673-80. PubMed ID: 24654959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ATP-powered molecular recognition to engineer transient multivalency and self-sorting 4D hierarchical systems.
    Deng J; Walther A
    Nat Commun; 2020 Jul; 11(1):3658. PubMed ID: 32694613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autonomous DNA nanostructures instructed by hierarchically concatenated chemical reaction networks.
    Deng J; Walther A
    Nat Commun; 2021 Aug; 12(1):5132. PubMed ID: 34446724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Programmable dynamic steady states in ATP-driven nonequilibrium DNA systems.
    Heinen L; Walther A
    Sci Adv; 2019 Jul; 5(7):eaaw0590. PubMed ID: 31334349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complex reconfiguration of DNA nanostructures.
    Wei B; Ong LL; Chen J; Jaffe AS; Yin P
    Angew Chem Int Ed Engl; 2014 Jul; 53(29):7475-9. PubMed ID: 24899518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Information-based autonomous reconfiguration in systems of interacting DNA nanostructures.
    Petersen P; Tikhomirov G; Qian L
    Nat Commun; 2018 Dec; 9(1):5362. PubMed ID: 30560865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spontaneous Reorganization of DNA-Based Polymers in Higher Ordered Structures Fueled by RNA.
    Gentile S; Del Grosso E; Pungchai PE; Franco E; Prins LJ; Ricci F
    J Am Chem Soc; 2021 Dec; 143(48):20296-20301. PubMed ID: 34843256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent Advances in the Synthesis and Functions of Reconfigurable Interlocked DNA Nanostructures.
    Lu CH; Cecconello A; Willner I
    J Am Chem Soc; 2016 Apr; 138(16):5172-85. PubMed ID: 27019201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gated Transient Dissipative Dimerization of DNA Tetrahedra Nanostructures for Programmed DNAzymes Catalysis.
    Li Z; Wang J; Zhou Z; O'Hagan MP; Willner I
    ACS Nano; 2022 Mar; 16(3):3625-3636. PubMed ID: 35184545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconfiguration of DNA nanostructures induced by enzymatic ligation treatment.
    Bai T; Zhang J; Huang K; Wang W; Chen B; Li Y; Zhao M; Zhang S; Zhu C; Liu D; Wei B
    Nucleic Acids Res; 2022 Aug; 50(14):8392-8398. PubMed ID: 35880584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymer Transformers: Interdigitating Reaction Networks of Fueled Monomer Species to Reconfigure Functional Polymer States.
    Sun M; Deng J; Walther A
    Angew Chem Int Ed Engl; 2020 Oct; 59(41):18161-18165. PubMed ID: 32608535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic Trans-Assembly of DNA Nanostructures.
    Shin J; Kim J; Park SH; Ha TH
    ACS Nano; 2018 Sep; 12(9):9423-9432. PubMed ID: 30114364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlled synthesis of organic two-dimensional nanostructures
    Dhiman S; Ghosh R; Sarkar S; George SJ
    Chem Sci; 2020 Jul; 11(47):12701-12709. PubMed ID: 34094465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Switchable Triggered Interconversion and Reconfiguration of DNA Origami Dimers and Their Use for Programmed Catalysis.
    Wang J; Zhou Z; Yue L; Wang S; Willner I
    Nano Lett; 2018 Apr; 18(4):2718-2724. PubMed ID: 29537286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlling the Catalytic Functions of DNAzymes within Constitutional Dynamic Networks of DNA Nanostructures.
    Wang S; Yue L; Shpilt Z; Cecconello A; Kahn JS; Lehn JM; Willner I
    J Am Chem Soc; 2017 Jul; 139(28):9662-9671. PubMed ID: 28627887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chains, dimers, and sandwiches: melting behavior of DNA nanoassemblies.
    Bayer J; Rädler JO; Blossey R
    Nano Lett; 2005 Mar; 5(3):497-501. PubMed ID: 15755101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supramolecular 1-D polymerization of DNA origami through a dynamic process at the 2-dimensionally confined air-water interface.
    Yonamine Y; Cervantes-Salguero K; Minami K; Kawamata I; Nakanishi W; Hill JP; Murata S; Ariga K
    Phys Chem Chem Phys; 2016 May; 18(18):12576-81. PubMed ID: 27091668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple Light Control Mechanisms in ATP-Fueled Non-equilibrium DNA Systems.
    Deng J; Bezold D; Jessen HJ; Walther A
    Angew Chem Int Ed Engl; 2020 Jul; 59(29):12084-12092. PubMed ID: 32232894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.