These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 31895566)
1. Plasma Polymerization of Acrylic Acid for the Tunable Synthesis of Glassy and Carboxylated Nanoparticles. Pleskunov P; Nikitin D; Tafiichuk R; Shelemin A; Hanuš J; Kousal J; Krtouš Z; Khalakhan I; Kúš P; Nasu T; Nagahama T; Funaki C; Sato H; Gawek M; Schoenhals A; Choukourov A J Phys Chem B; 2020 Jan; 124(4):668-678. PubMed ID: 31895566 [TBL] [Abstract][Full Text] [Related]
2. Carboxyl-Functionalized Nanoparticles Produced by Pulsed Plasma Polymerization of Acrylic Acid. Pleskunov P; Nikitin D; Tafiichuk R; Shelemin A; Hanuš J; Khalakhan I; Choukourov A J Phys Chem B; 2018 Apr; 122(14):4187-4194. PubMed ID: 29578707 [TBL] [Abstract][Full Text] [Related]
3. Synthesis and characterization of polyacrylonitrile nanoparticles by dispersion/emulsion polymerization process. Boguslavsky L; Baruch S; Margel S J Colloid Interface Sci; 2005 Sep; 289(1):71-85. PubMed ID: 16009219 [TBL] [Abstract][Full Text] [Related]
4. Controlled aqueous polymerization of acrylamides and acrylates and "in situ" depolymerization in the presence of dissolved CO2. Lloyd DJ; Nikolaou V; Collins J; Waldron C; Anastasaki A; Bassett SP; Howdle SM; Blanazs A; Wilson P; Kempe K; Haddleton DM Chem Commun (Camb); 2016 May; 52(39):6533-6. PubMed ID: 27111827 [TBL] [Abstract][Full Text] [Related]
5. Surface functionality as a means to impact polymer nanoparticle size and structure. Schneider J; Jallouk AP; Vasquez D; Thomann R; Forget A; Pino CJ; Shastri VP Langmuir; 2013 Mar; 29(12):4092-5. PubMed ID: 23438034 [TBL] [Abstract][Full Text] [Related]
6. Protein immobilization on nanoporous silicon functionalized by RF activated plasma polymerization of Acrylic Acid. Rivolo P; Severino SM; Ricciardi S; Frascella F; Geobaldo F J Colloid Interface Sci; 2014 Feb; 416():73-80. PubMed ID: 24370404 [TBL] [Abstract][Full Text] [Related]
7. A facile route to the synthesis of spherical poly(acrylic acid) brushes via RAFT polymerization for high-capacity protein immobilization. Qu Z; Hu F; Chen K; Duan Z; Gu H; Xu H J Colloid Interface Sci; 2013 May; 398():82-7. PubMed ID: 23506746 [TBL] [Abstract][Full Text] [Related]
8. Double-stimuli-responsive spherical polymer brushes with a poly(ionic liquid) core and a thermoresponsive shell. Men Y; Drechsler M; Yuan J Macromol Rapid Commun; 2013 Nov; 34(21):1721-7. PubMed ID: 24186465 [TBL] [Abstract][Full Text] [Related]
9. Anisotropic nanoparticles with controllable morphologies from non-cross-linked seeded emulsion polymerization. Niu Q; Pan M; Yuan J; Liu X; Wang X; Yu H Macromol Rapid Commun; 2013 Sep; 34(17):1363-7. PubMed ID: 23901006 [TBL] [Abstract][Full Text] [Related]
10. Tunable poly(methacrylic acid-co-acrylamide) nanoparticles through inverse emulsion polymerization. Zhong JX; Clegg JR; Ander EW; Peppas NA J Biomed Mater Res A; 2018 Jun; 106(6):1677-1686. PubMed ID: 29453807 [TBL] [Abstract][Full Text] [Related]
11. Erratum: Preparation of Poly(pentafluorophenyl acrylate) Functionalized SiO2 Beads for Protein Purification. J Vis Exp; 2019 Apr; (146):. PubMed ID: 31038480 [TBL] [Abstract][Full Text] [Related]
12. Templateless synthesis of polyacrylamide-based Nanogels via RAFT dispersion polymerization. Ma K; Xu Y; An Z Macromol Rapid Commun; 2015 Mar; 36(6):566-70. PubMed ID: 25684634 [TBL] [Abstract][Full Text] [Related]
13. Conjugated Polymer Nanoparticles as Unique Coinitiator-Free, Water-Soluble, Visible-Light Photoinitiators of Vinyl Polymerization. Gallastegui A; Spada RM; Cagnetta G; Ponzio RA; Martínez SR; Previtali CM; Gómez ML; Palacios RE; Chesta CA Macromol Rapid Commun; 2020 Apr; 41(8):e1900601. PubMed ID: 32053268 [TBL] [Abstract][Full Text] [Related]
14. Synthesis and characterization of poly(acrylic acid) stabilized cadmium sulfide quantum dots. Celebi S; Erdamar AK; Sennaroglu A; Kurt A; Acar HY J Phys Chem B; 2007 Nov; 111(44):12668-75. PubMed ID: 17929960 [TBL] [Abstract][Full Text] [Related]
15. The Role of Starch Incorporation into Waterborne Acrylic-Hybrid Nanoparticles for Film-Forming Applications. Cabrera SF; Ronco LI; Passeggi MCG; Gugliotta LM; Minari RJ Biomacromolecules; 2024 Oct; 25(10):6591-6601. PubMed ID: 39312198 [TBL] [Abstract][Full Text] [Related]
16. Synthesis and characterization of chitosan-poly(acrylic acid) nanoparticles. Hu Y; Jiang X; Ding Y; Ge H; Yuan Y; Yang C Biomaterials; 2002 Aug; 23(15):3193-201. PubMed ID: 12102191 [TBL] [Abstract][Full Text] [Related]
17. Site-Specifically Initiated Controlled/Living Branching Radical Polymerization: A Synthetic Route toward Hierarchically Branched Architectures. Li F; Cao M; Feng Y; Liang R; Fu X; Zhong M J Am Chem Soc; 2019 Jan; 141(2):794-799. PubMed ID: 30588805 [TBL] [Abstract][Full Text] [Related]
18. Reactive and Functional Nanoobjects by Polymerization-Induced Self-Assembly. Le D; Keller D; Delaittre G Macromol Rapid Commun; 2019 Jan; 40(2):e1800551. PubMed ID: 30325550 [TBL] [Abstract][Full Text] [Related]
19. Functional polymeric nanoparticles for dexamethasone loading and release. Fratoddi I; Venditti I; Cametti C; Palocci C; Chronopoulou L; Marino M; Acconcia F; Russo MV Colloids Surf B Biointerfaces; 2012 May; 93():59-66. PubMed ID: 22227016 [TBL] [Abstract][Full Text] [Related]
20. Synthesis of β-cyclodextrin modified chitosan-poly(acrylic acid) nanoparticles and use as drug carriers. Wang X; Chen C; Huo D; Qian H; Ding Y; Hu Y; Jiang X Carbohydr Polym; 2012 Sep; 90(1):361-9. PubMed ID: 24751053 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]