BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 31895927)

  • 1. Gene expression profiling of Trypanosoma cruzi in the presence of heme points to glycosomal metabolic adaptation of epimastigotes inside the vector.
    Paes MC; Saraiva FMS; Nogueira NP; Vieira CSD; Dias FA; Rossini A; Coelho VL; Pane A; Sang F; Alcocer M
    PLoS Negl Trop Dis; 2020 Jan; 14(1):e0007945. PubMed ID: 31895927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glucose metabolism sustains heme-induced Trypanosoma cruzi epimastigote growth in vitro.
    Silva Dias Vieira C; Pinheiro Aguiar R; de Almeida Nogueira NP; Costa Dos Santos Junior G; Paes MC
    PLoS Negl Trop Dis; 2023 Nov; 17(11):e0011725. PubMed ID: 37948458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proliferation and differentiation of Trypanosoma cruzi inside its vector have a new trigger: redox status.
    Nogueira NP; Saraiva FM; Sultano PE; Cunha PR; Laranja GA; Justo GA; Sabino KC; Coelho MG; Rossini A; Atella GC; Paes MC
    PLoS One; 2015; 10(2):e0116712. PubMed ID: 25671543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The glycosomal-membrane associated phosphoglycerate kinase isoenzyme A plays a role in sustaining the glucose flux in Trypanosoma cruzi epimastigotes.
    Barros-Álvarez X; Cáceres AJ; Ruiz MT; Michels PA; Concepción JL; Quiñones W
    Mol Biochem Parasitol; 2015; 200(1-2):5-8. PubMed ID: 25917939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heme-induced ROS in Trypanosoma cruzi activates CaMKII-like that triggers epimastigote proliferation. One helpful effect of ROS.
    Nogueira NP; de Souza CF; Saraiva FM; Sultano PE; Dalmau SR; Bruno RE; Gonçalves Rde L; Laranja GA; Leal LH; Coelho MG; Masuda CA; Oliveira MF; Paes MC
    PLoS One; 2011; 6(10):e25935. PubMed ID: 22022475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteomic analysis of glycosomes from Trypanosoma cruzi epimastigotes.
    Acosta H; Burchmore R; Naula C; Gualdrón-López M; Quintero-Troconis E; Cáceres AJ; Michels PAM; Concepción JL; Quiñones W
    Mol Biochem Parasitol; 2019 Apr; 229():62-74. PubMed ID: 30831156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptomic analysis of the adaptation to prolonged starvation of the insect-dwelling
    Smircich P; Pérez-Díaz L; Hernández F; Duhagon MA; Garat B
    Front Cell Infect Microbiol; 2023; 13():1138456. PubMed ID: 37091675
    [No Abstract]   [Full Text] [Related]  

  • 8. Heme-induced Trypanosoma cruzi proliferation is mediated by CaM kinase II.
    Souza CF; Carneiro AB; Silveira AB; Laranja GA; Silva-Neto MA; Costa SC; Paes MC
    Biochem Biophys Res Commun; 2009 Dec; 390(3):541-6. PubMed ID: 19818332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein synthesis attenuation by phosphorylation of eIF2α is required for the differentiation of Trypanosoma cruzi into infective forms.
    Tonelli RR; Augusto Lda S; Castilho BA; Schenkman S
    PLoS One; 2011; 6(11):e27904. PubMed ID: 22114724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new model for
    Pagura L; Tevere E; Merli ML; Cricco JA
    J Biol Chem; 2020 Sep; 295(38):13202-13212. PubMed ID: 32709751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heme modulates Trypanosoma cruzi bioenergetics inducing mitochondrial ROS production.
    Nogueira NP; Saraiva FMS; Oliveira MP; Mendonça APM; Inacio JDF; Almeida-Amaral EE; Menna-Barreto RF; Laranja GAT; Torres EJL; Oliveira MF; Paes MC
    Free Radic Biol Med; 2017 Jul; 108():183-191. PubMed ID: 28363600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The development of Trypanosoma cruzi in triatominae.
    Kollien AH; Schaub GA
    Parasitol Today; 2000 Sep; 16(9):381-7. PubMed ID: 10951597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subcellular localization of glycolytic enzymes and characterization of intermediary metabolism of Trypanosoma rangeli.
    Rondón-Mercado R; Acosta H; Cáceres AJ; Quiñones W; Concepción JL
    Mol Biochem Parasitol; 2017 Sep; 216():21-29. PubMed ID: 28645481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control measures for Chagas disease.
    Cruz-Pacheco G; Esteva L; Vargas C
    Math Biosci; 2012 May; 237(1-2):49-60. PubMed ID: 22450034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolomic profiling reveals a finely tuned, starvation-induced metabolic switch in
    Barisón MJ; Rapado LN; Merino EF; Furusho Pral EM; Mantilla BS; Marchese L; Nowicki C; Silber AM; Cassera MB
    J Biol Chem; 2017 May; 292(21):8964-8977. PubMed ID: 28356355
    [No Abstract]   [Full Text] [Related]  

  • 16. Colonization of Rhodnius prolixus gut by Trypanosoma cruzi involves an extensive parasite killing.
    Ferreira RC; Kessler RL; Lorenzo MG; Paim RM; Ferreira Lde L; Probst CM; Alves-Silva J; Guarneri AA
    Parasitology; 2016 Apr; 143(4):434-43. PubMed ID: 26818093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioactive lipids regulate Trypanosoma cruzi development.
    Chagas-Lima AC; Pereira MG; Fampa P; Lima MS; Kluck GEG; Atella GC
    Parasitol Res; 2019 Sep; 118(9):2609-2619. PubMed ID: 31267245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trypanosomatid essential metabolic pathway: new approaches about heme fate in Trypanosoma cruzi.
    Cupello MP; Souza CF; Menna-Barreto RF; Nogueira NP; Laranja GA; Sabino KC; Coelho MG; Oliveira MM; Paes MC
    Biochem Biophys Res Commun; 2014 Jun; 449(2):216-21. PubMed ID: 24824181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extensive Translational Regulation through the Proliferative Transition of Trypanosoma cruzi Revealed by Multi-Omics.
    Chávez S; Urbaniak MD; Benz C; Smircich P; Garat B; Sotelo-Silveira JR; Duhagon MA
    mSphere; 2021 Oct; 6(5):e0036621. PubMed ID: 34468164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heme crystallization in a Chagas disease vector acts as a redox-protective mechanism to allow insect reproduction and parasite infection.
    Ferreira CM; Stiebler R; Saraiva FM; Lechuga GC; Walter-Nuno AB; Bourguignon SC; Gonzalez MS; Azambuja P; Gandara ACP; Menna-Barreto RFS; Paiva-Silva GO; Paes MC; Oliveira MF
    PLoS Negl Trop Dis; 2018 Jul; 12(7):e0006661. PubMed ID: 30036366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.