These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 31896049)
1. Antibiofilm effect of mesoporous titania coatings on Pseudomonas aeruginosa biofilms. Pezzoni M; Catalano PN; Delgado DC; Pizarro RA; Bellino MG; Costa CS J Photochem Photobiol B; 2020 Jan; 203():111762. PubMed ID: 31896049 [TBL] [Abstract][Full Text] [Related]
2. Antibiofilm effect of supramolecularly templated mesoporous silica coatings. Pezzoni M; Catalano PN; Pizarro RA; Desimone MF; Soler-Illia GJAA; Bellino MG; Costa CS Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():1044-1049. PubMed ID: 28531977 [TBL] [Abstract][Full Text] [Related]
3. Hierarchical-structured anatase-titania/cellulose composite sheet with high photocatalytic performance and antibacterial activity. Luo Y; Huang J Chemistry; 2015 Feb; 21(6):2568-75. PubMed ID: 25487409 [TBL] [Abstract][Full Text] [Related]
4. Photocatalytic and biocidal activities of novel coating systems of mesoporous and dense TiO₂-anatase containing silver nanoparticles. Roldán MV; de Oña P; Castro Y; Durán A; Faccendini P; Lagier C; Grau R; Pellegri NS Mater Sci Eng C Mater Biol Appl; 2014 Oct; 43():630-40. PubMed ID: 25175258 [TBL] [Abstract][Full Text] [Related]
5. Synthesis of titanium oxide nanoparticles using Aloe barbadensis mill and evaluation of its antibiofilm potential against Pseudomonas aeruginosa PAO1. Rajkumari J; Magdalane CM; Siddhardha B; Madhavan J; Ramalingam G; Al-Dhabi NA; Arasu MV; Ghilan AKM; Duraipandiayan V; Kaviyarasu K J Photochem Photobiol B; 2019 Dec; 201():111667. PubMed ID: 31683167 [TBL] [Abstract][Full Text] [Related]
6. Exposure to low doses of UVA increases biofilm formation in Pseudomonas aeruginosa. Pezzoni M; Pizarro RA; Costa CS Biofouling; 2018 Jul; 34(6):673-684. PubMed ID: 30185068 [TBL] [Abstract][Full Text] [Related]
7. Protective role of extracellular catalase (KatA) against UVA radiation in Pseudomonas aeruginosa biofilms. Pezzoni M; Pizarro RA; Costa CS J Photochem Photobiol B; 2014 Feb; 131():53-64. PubMed ID: 24491420 [TBL] [Abstract][Full Text] [Related]
8. Antimicrobial performance of mesoporous titania thin films: role of pore size, hydrophobicity, and antibiotic release. Atefyekta S; Ercan B; Karlsson J; Taylor E; Chung S; Webster TJ; Andersson M Int J Nanomedicine; 2016; 11():977-90. PubMed ID: 27022263 [TBL] [Abstract][Full Text] [Related]
9. Synthesis of new antibacterial composite coating for titanium based on highly ordered nanoporous silica and silver nanoparticles. Massa MA; Covarrubias C; Bittner M; Fuentevilla IA; Capetillo P; Von Marttens A; Carvajal JC Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():146-53. PubMed ID: 25491813 [TBL] [Abstract][Full Text] [Related]
10. 3,6-Di(pyridin-2-yl)-1,2,4,5-tetrazine (pytz)-capped silver nanoparticles (TzAgNPs) inhibit biofilm formation of Pseudomonas aeruginosa: a potential approach toward breaking the wall of biofilm through reactive oxygen species (ROS) generation. Chakraborty P; Joardar S; Ray S; Biswas P; Maiti D; Tribedi P Folia Microbiol (Praha); 2018 Nov; 63(6):763-772. PubMed ID: 29855854 [TBL] [Abstract][Full Text] [Related]
11. Antimicrobial and antibiofilm efficacy of self-cleaning surfaces functionalized by TiO Jalvo B; Faraldos M; Bahamonde A; Rosal R J Hazard Mater; 2017 Oct; 340():160-170. PubMed ID: 28715739 [TBL] [Abstract][Full Text] [Related]
12. Photocatalytic coatings for environmental applications. Allen NS; Edge M; Sandoval G; Verran J; Stratton J; Maltby J Photochem Photobiol; 2005; 81(2):279-90. PubMed ID: 15279507 [TBL] [Abstract][Full Text] [Related]
13. Exopolysaccharide biosynthetic glycoside hydrolases can be utilized to disrupt and prevent Pseudomonas aeruginosa biofilms. Baker P; Hill PJ; Snarr BD; Alnabelseya N; Pestrak MJ; Lee MJ; Jennings LK; Tam J; Melnyk RA; Parsek MR; Sheppard DC; Wozniak DJ; Howell PL Sci Adv; 2016 May; 2(5):e1501632. PubMed ID: 27386527 [TBL] [Abstract][Full Text] [Related]
14. Formation of hydroxyl radicals contributes to the bactericidal activity of ciprofloxacin against Pseudomonas aeruginosa biofilms. Jensen PØ; Briales A; Brochmann RP; Wang H; Kragh KN; Kolpen M; Hempel C; Bjarnsholt T; Høiby N; Ciofu O Pathog Dis; 2014 Apr; 70(3):440-3. PubMed ID: 24376174 [TBL] [Abstract][Full Text] [Related]
15. Bactericidal effect of photocatalytically-active nanostructured TiO Westas E; Hayashi M; Cecchinato F; Wennerberg A; Andersson M; Jimbo R; Davies JR J Biomed Mater Res A; 2017 Aug; 105(8):2321-2328. PubMed ID: 28380676 [TBL] [Abstract][Full Text] [Related]
16. Staphylococcus aureus resists UVA at low irradiance but succumbs in the presence of TiO Clemente A; Ramsden JJ; Wright A; Iza F; Morrissey JA; Li Puma G; Malik DJ J Photochem Photobiol B; 2019 Apr; 193():131-139. PubMed ID: 30851512 [TBL] [Abstract][Full Text] [Related]
17. Transport behavior of selected nanoparticles with different surface coatings in granular porous media coated with Pseudomonas aeruginosa biofilm. Tripathi S; Champagne D; Tufenkji N Environ Sci Technol; 2012 Jul; 46(13):6942-9. PubMed ID: 22148225 [TBL] [Abstract][Full Text] [Related]
18. Superior Bactericidal Efficacy of Fucose-Functionalized Silver Nanoparticles against Pseudomonas aeruginosa PAO1 and Prevention of Its Colonization on Urinary Catheters. Bhargava A; Pareek V; Roy Choudhury S; Panwar J; Karmakar S ACS Appl Mater Interfaces; 2018 Sep; 10(35):29325-29337. PubMed ID: 30096228 [TBL] [Abstract][Full Text] [Related]