These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

649 related articles for article (PubMed ID: 31896056)

  • 1. Fully automatic estimation of pelvic sagittal inclination from anterior-posterior radiography image using deep learning framework.
    Jodeiri A; Zoroofi RA; Hiasa Y; Takao M; Sugano N; Sato Y; Otake Y
    Comput Methods Programs Biomed; 2020 Feb; 184():105282. PubMed ID: 31896056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning approaches using 2D and 3D convolutional neural networks for generating male pelvic synthetic computed tomography from magnetic resonance imaging.
    Fu J; Yang Y; Singhrao K; Ruan D; Chu FI; Low DA; Lewis JH
    Med Phys; 2019 Sep; 46(9):3788-3798. PubMed ID: 31220353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catheter segmentation in X-ray fluoroscopy using synthetic data and transfer learning with light U-nets.
    Gherardini M; Mazomenos E; Menciassi A; Stoyanov D
    Comput Methods Programs Biomed; 2020 Aug; 192():105420. PubMed ID: 32171151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep-learning-based detection and segmentation of organs at risk in nasopharyngeal carcinoma computed tomographic images for radiotherapy planning.
    Liang S; Tang F; Huang X; Yang K; Zhong T; Hu R; Liu S; Yuan X; Zhang Y
    Eur Radiol; 2019 Apr; 29(4):1961-1967. PubMed ID: 30302589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reproducibility of pelvic sagittal inclination while acquiring radiographs in supine and standing postures.
    Uemura K; Takao M; Otake Y; Koyama K; Yokota F; Hamada H; Sakai T; Sato Y; Sugano N
    J Orthop Surg (Hong Kong); 2019; 27(1):2309499019828515. PubMed ID: 30798713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Postoperative glioma segmentation in CT image using deep feature fusion model guided by multi-sequence MRIs.
    Tang F; Liang S; Zhong T; Huang X; Deng X; Zhang Y; Zhou L
    Eur Radiol; 2020 Feb; 30(2):823-832. PubMed ID: 31650265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Does Pelvic Sagittal Inclination in the Supine and Standing Positions Change Over 10 Years of Follow-Up After Total Hip Arthroplasty?
    Tamura S; Nishihara S; Takao M; Sakai T; Miki H; Sugano N
    J Arthroplasty; 2017 Mar; 32(3):877-882. PubMed ID: 27693053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-stage multi-task deep learning framework for simultaneous pelvic bone segmentation and landmark detection from CT images.
    Zhai H; Chen Z; Li L; Tao H; Wang J; Li K; Shao M; Cheng X; Wang J; Wu X; Wu C; Zhang X; Kettunen L; Wang H
    Int J Comput Assist Radiol Surg; 2024 Jan; 19(1):97-108. PubMed ID: 37322299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fully automated multiorgan segmentation of female pelvic magnetic resonance images with coarse-to-fine convolutional neural network.
    Zabihollahy F; Viswanathan AN; Schmidt EJ; Morcos M; Lee J
    Med Phys; 2021 Nov; 48(11):7028-7042. PubMed ID: 34609756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Concurrent Learning Approach for Estimation of Pelvic Tilt from Anterior-Posterior Radiograph.
    Jodeiri A; Seyedarabi H; Danishvar S; Shafiei SH; Sales JG; Khoori M; Rahimi S; Mortazavi SMJ
    Bioengineering (Basel); 2024 Feb; 11(2):. PubMed ID: 38391680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks.
    Tong N; Gou S; Yang S; Ruan D; Sheng K
    Med Phys; 2018 Oct; 45(10):4558-4567. PubMed ID: 30136285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A convolutional neural network algorithm for automatic segmentation of head and neck organs at risk using deep lifelong learning.
    Chan JW; Kearney V; Haaf S; Wu S; Bogdanov M; Reddick M; Dixit N; Sudhyadhom A; Chen J; Yom SS; Solberg TD
    Med Phys; 2019 May; 46(5):2204-2213. PubMed ID: 30887523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tilt-adjusted Cup Anteversion in Patients with Severe Backward Pelvic Tilt is Associated with the Risk of Iliopsoas Impingement: A Three-dimensional Implantation Simulation.
    Ueno T; Kabata T; Kajino Y; Ohmori T; Yoshitani J; Ueoka K; Tsuchiya H
    Clin Orthop Relat Res; 2019 Oct; 477(10):2243-2254. PubMed ID: 31169628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic bladder segmentation from CT images using deep CNN and 3D fully connected CRF-RNN.
    Xu X; Zhou F; Liu B
    Int J Comput Assist Radiol Surg; 2018 Jul; 13(7):967-975. PubMed ID: 29556905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy.
    Zhu W; Huang Y; Zeng L; Chen X; Liu Y; Qian Z; Du N; Fan W; Xie X
    Med Phys; 2019 Feb; 46(2):576-589. PubMed ID: 30480818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of the automatic segmentation of multiple organs at risk in CT images of lung cancer between deep convolutional neural network-based and atlas-based techniques.
    Zhu J; Zhang J; Qiu B; Liu Y; Liu X; Chen L
    Acta Oncol; 2019 Feb; 58(2):257-264. PubMed ID: 30398090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ARPM-net: A novel CNN-based adversarial method with Markov random field enhancement for prostate and organs at risk segmentation in pelvic CT images.
    Zhang Z; Zhao T; Gay H; Zhang W; Sun B
    Med Phys; 2021 Jan; 48(1):227-237. PubMed ID: 33151620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Utility of a novel integrated deep convolutional neural network for the segmentation of hip joint from computed tomography images in the preoperative planning of total hip arthroplasty.
    Wu D; Zhi X; Liu X; Zhang Y; Chai W
    J Orthop Surg Res; 2022 Mar; 17(1):164. PubMed ID: 35292056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep learning for automated segmentation of pelvic muscles, fat, and bone from CT studies for body composition assessment.
    Hemke R; Buckless CG; Tsao A; Wang B; Torriani M
    Skeletal Radiol; 2020 Mar; 49(3):387-395. PubMed ID: 31396667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic segmentation of the clinical target volume and organs at risk in the planning CT for rectal cancer using deep dilated convolutional neural networks.
    Men K; Dai J; Li Y
    Med Phys; 2017 Dec; 44(12):6377-6389. PubMed ID: 28963779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.