These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 31896092)
1. Phase-field modelling of the effect of density change on solidification revisited: model development and analytical solutions for single component materials. Tóth GI; Ma W J Phys Condens Matter; 2020 May; 32(20):205402. PubMed ID: 31896092 [TBL] [Abstract][Full Text] [Related]
2. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
3. Nearly incompressible fluids: hydrodynamics and large scale inhomogeneity. Hunana P; Zank GP; Shaikh D Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 2):026302. PubMed ID: 17025534 [TBL] [Abstract][Full Text] [Related]
4. Phase-field model for binary alloys. Kim SG; Kim WT; Suzuki T Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Dec; 60(6 Pt B):7186-97. PubMed ID: 11970661 [TBL] [Abstract][Full Text] [Related]
5. Phase-field modeling of binary alloy solidification with coupled heat and solute diffusion. Ramirez JC; Beckermann C; Karma A; Diepers HJ Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 1):051607. PubMed ID: 15244829 [TBL] [Abstract][Full Text] [Related]
6. Variational formulation of a quantitative phase-field model for nonisothermal solidification in a multicomponent alloy. Ohno M; Takaki T; Shibuta Y Phys Rev E; 2017 Sep; 96(3-1):033311. PubMed ID: 29346979 [TBL] [Abstract][Full Text] [Related]
7. The boundary integral theory for slow and rapid curved solid/liquid interfaces propagating into binary systems. Galenko PK; Alexandrov DV; Titova EA Philos Trans A Math Phys Eng Sci; 2018 Feb; 376(2113):. PubMed ID: 29311215 [TBL] [Abstract][Full Text] [Related]
8. Variational formulation and numerical accuracy of a quantitative phase-field model for binary alloy solidification with two-sided diffusion. Ohno M; Takaki T; Shibuta Y Phys Rev E; 2016 Jan; 93(1):012802. PubMed ID: 26871136 [TBL] [Abstract][Full Text] [Related]
9. Quantitative phase-field modeling of two-phase growth. Folch R; Plapp M Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 1):011602. PubMed ID: 16089974 [TBL] [Abstract][Full Text] [Related]
10. Interface dynamics and solute trapping in alloy solidification with density change. Conti M; Fermani M Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026117. PubMed ID: 12636758 [TBL] [Abstract][Full Text] [Related]
11. Phase-field method based on discrete unified gas-kinetic scheme for large-density-ratio two-phase flows. Yang Z; Zhong C; Zhuo C Phys Rev E; 2019 Apr; 99(4-1):043302. PubMed ID: 31108650 [TBL] [Abstract][Full Text] [Related]
12. Phase-field modeling of solute precipitation and dissolution. Xu Z; Meakin P J Chem Phys; 2008 Jul; 129(1):014705. PubMed ID: 18624494 [TBL] [Abstract][Full Text] [Related]
13. Effects of nonlinear interfacial kinetics and interfacial thermal resistance in planar solidification. Palmieri B; Ward CA; Dejmek M Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051605. PubMed ID: 23214791 [TBL] [Abstract][Full Text] [Related]
14. Unified derivation of phase-field models for alloy solidification from a grand-potential functional. Plapp M Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 1):031601. PubMed ID: 22060379 [TBL] [Abstract][Full Text] [Related]
15. Quantitative phase-field modeling for boiling phenomena. Badillo A Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041603. PubMed ID: 23214595 [TBL] [Abstract][Full Text] [Related]
16. Phase-field modeling of isothermal quasi-incompressible multicomponent liquids. Tóth GI Phys Rev E; 2016 Sep; 94(3-1):033114. PubMed ID: 27739808 [TBL] [Abstract][Full Text] [Related]
18. A phase-field-crystal alloy model for late-stage solidification studies involving the interaction of solid, liquid and gas phases. Wang N; Kocher G; Provatas N Philos Trans A Math Phys Eng Sci; 2018 Feb; 376(2113):. PubMed ID: 29311210 [TBL] [Abstract][Full Text] [Related]
19. Systematic derivation of hydrodynamic equations for viscoelastic phase separation. Spiller D; Brunk A; Habrich O; Egger H; Lukáčová-Medvid'ová M; Dünweg B J Phys Condens Matter; 2021 Jul; 33(36):. PubMed ID: 34153954 [TBL] [Abstract][Full Text] [Related]
20. A diffuse-interface modeling for liquid solution-solid gel phase transition of physical hydrogel with nonlinear deformation. Li H; Wu T Electrophoresis; 2016 Oct; 37(20):2699-2709. PubMed ID: 27422498 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]