These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 31896215)
1. Efficient removal and long-term sequestration of cadmium from aqueous solution using ferrous sulfide nanoparticles: Performance, mechanisms, and long-term stability. Tian S; Gong Y; Ji H; Duan J; Zhao D Sci Total Environ; 2020 Feb; 704():135402. PubMed ID: 31896215 [TBL] [Abstract][Full Text] [Related]
2. Immobilization of mercury by carboxymethyl cellulose stabilized iron sulfide nanoparticles: reaction mechanisms and effects of stabilizer and water chemistry. Gong Y; Liu Y; Xiong Z; Zhao D Environ Sci Technol; 2014 Apr; 48(7):3986-94. PubMed ID: 24568693 [TBL] [Abstract][Full Text] [Related]
3. Enhanced removal of zinc and cadmium from water using carboxymethyl cellulose-bridged chlorapatite nanoparticles. Li Z; Gong Y; Zhao D; Dang Z; Lin Z Chemosphere; 2021 Jan; 263():128038. PubMed ID: 33297055 [TBL] [Abstract][Full Text] [Related]
4. Impact of carboxymethyl cellulose coating on iron sulphide nanoparticles stability, transport, and mobilization potential of trace metals present in soils and sediment. Van Koetsem F; Van Havere L; Du Laing G J Environ Manage; 2016 Mar; 168():210-8. PubMed ID: 26708651 [TBL] [Abstract][Full Text] [Related]
5. Fabrication of Stabilized Fe⁻Mn Binary Oxide Nanoparticles: Effective Adsorption of 17β-Estradiol and Influencing Factors. Ning Q; Yin Z; Liu Y; Tan X; Zeng G; Jiang L; Liu S; Tian S; Liu N; Wang X Int J Environ Res Public Health; 2018 Oct; 15(10):. PubMed ID: 30314268 [TBL] [Abstract][Full Text] [Related]
6. Immobilization of uranium by biomaterial stabilized FeS nanoparticles: Effects of stabilizer and enrichment mechanism. Shao D; Ren X; Wen J; Hu S; Xiong J; Jiang T; Wang X; Wang X J Hazard Mater; 2016 Jan; 302():1-9. PubMed ID: 26448488 [TBL] [Abstract][Full Text] [Related]
7. Removal of aqueous perfluorooctanoic acid (PFOA) using starch-stabilized magnetite nanoparticles. Gong Y; Wang L; Liu J; Tang J; Zhao D Sci Total Environ; 2016 Aug; 562():191-200. PubMed ID: 27100000 [TBL] [Abstract][Full Text] [Related]
8. Green remediation of mercury-contaminated soil using iron sulfide nanoparticles: Immobilization performance and mechanisms, effects on soil properties, and life cycle assessment. Lin D; Hu G; Li H; Wu F; Li L; Yang G; Zhuang L; Gong Y Sci Total Environ; 2024 Sep; 944():173928. PubMed ID: 38871308 [TBL] [Abstract][Full Text] [Related]
9. Biosorption of copper, zinc, cadmium and chromium ions from aqueous solution by natural foxtail millet shell. Peng SH; Wang R; Yang LZ; He L; He X; Liu X Ecotoxicol Environ Saf; 2018 Dec; 165():61-69. PubMed ID: 30193165 [TBL] [Abstract][Full Text] [Related]
10. In-situ remediation of hexavalent chromium contaminated groundwater and saturated soil using stabilized iron sulfide nanoparticles. Wang T; Liu Y; Wang J; Wang X; Liu B; Wang Y J Environ Manage; 2019 Feb; 231():679-686. PubMed ID: 30391712 [TBL] [Abstract][Full Text] [Related]
11. Nano-FeS incorporated into stable lignin hydrogel: A novel strategy for cadmium removal from soil. Liu Y; Huang Y; Zhang C; Li W; Chen C; Zhang Z; Chen H; Wang J; Li Y; Zhang Y Environ Pollut; 2020 Sep; 264():114739. PubMed ID: 32434113 [TBL] [Abstract][Full Text] [Related]
12. Effective remediation of low-concentration cadmium in groundwater using nano-scale magnesia. Koju NK; Song X; Wang Q Environ Sci Pollut Res Int; 2017 Apr; 24(11):10819-10832. PubMed ID: 28290088 [TBL] [Abstract][Full Text] [Related]
13. Chitosan-stabilized FeS magnetic composites for chromium removal: Characterization, performance, mechanism, and stability. Zhang H; Peng L; Chen A; Shang C; Lei M; He K; Luo S; Shao J; Zeng Q Carbohydr Polym; 2019 Jun; 214():276-285. PubMed ID: 30925998 [TBL] [Abstract][Full Text] [Related]
14. Equilibrium modeling of cadmium biosorption from aqueous solution by compost. Ahmad I; Akhtar MJ; Jadoon IBK; Imran M; Imran M; Ali S Environ Sci Pollut Res Int; 2017 Feb; 24(6):5277-5284. PubMed ID: 28004370 [TBL] [Abstract][Full Text] [Related]
15. Reductive Removal of Selenate in Water Using Stabilized Zero-Valent Iron Nanoparticles. Liu H; Cai Z; Zhao X; Zhao D; Qian T; Bozack M; Zhang M Water Environ Res; 2016 Aug; 88(8):694-703. PubMed ID: 27456140 [TBL] [Abstract][Full Text] [Related]
16. Carboxymethyl cellulose stabilized ferrous sulfide@extracellular polymeric substance for Cr(VI) removal: Characterization, performance, and mechanism. Xi Y; Xie T; Liu Y; Wu Y; Liu H; Su Z; Huang Y; Yuan X; Zhang C; Li X J Hazard Mater; 2022 Mar; 425():127837. PubMed ID: 34883376 [TBL] [Abstract][Full Text] [Related]
17. Immobilization of hexavalent chromium in contaminated soils using biochar supported nanoscale iron sulfide composite. Lyu H; Zhao H; Tang J; Gong Y; Huang Y; Wu Q; Gao B Chemosphere; 2018 Mar; 194():360-369. PubMed ID: 29223115 [TBL] [Abstract][Full Text] [Related]
18. Characteristics and long-term effects of stabilized nanoscale ferrous sulfide immobilized hexavalent chromium in soil. Li X; He X; Wang H; Liu Y J Hazard Mater; 2020 May; 389():122089. PubMed ID: 31978819 [TBL] [Abstract][Full Text] [Related]
19. The stability of the compounds formed in the process of removal Pb(II), Cu(II) and Cd(II) by steelmaking slag in an acidic aqueous solution. Yang L; Wen T; Wang L; Miki T; Bai H; Lu X; Yu H; Nagasaka T J Environ Manage; 2019 Feb; 231():41-48. PubMed ID: 30326337 [TBL] [Abstract][Full Text] [Related]
20. Removal of lead(II) and cadmium(II) from aqueous solutions using grape stalk waste. Martínez M; Miralles N; Hidalgo S; Fiol N; Villaescusa I; Poch J J Hazard Mater; 2006 May; 133(1-3):203-11. PubMed ID: 16310940 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]