These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 31896426)

  • 1. Role of randomly distributed nanoscale roughness for designing highly hydrophobic particle surface without using low surface energy coating.
    Dixit D; Ghoroi C
    J Colloid Interface Sci; 2020 Mar; 564():8-18. PubMed ID: 31896426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of atomic force microscopy to the study of natural and model soil particles.
    Cheng S; Bryant R; Doerr SH; Rhodri Williams P; Wright CJ
    J Microsc; 2008 Sep; 231(3):384-94. PubMed ID: 18754993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Observation of the rose petal effect over single- and dual-scale roughness surfaces.
    Yeh KY; Cho KH; Yeh YH; Promraksa A; Huang CH; Hsu CC; Chen LJ
    Nanotechnology; 2014 Aug; 25(34):345303. PubMed ID: 25100802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Addition of Cellulose Nanofibers to Control Surface Roughness for Hydrophobic Ceramic Coatings.
    Shin EA; Kim GH; Jung J; Lee SB; Lee CK
    J Nanosci Nanotechnol; 2021 Aug; 21(8):4492-4497. PubMed ID: 33714350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamic analysis of the wetting behavior of dual scale patterned hydrophobic surfaces.
    Sajadinia SH; Sharif F
    J Colloid Interface Sci; 2010 Apr; 344(2):575-83. PubMed ID: 20132948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration.
    Wang M; Favi P; Cheng X; Golshan NH; Ziemer KS; Keidar M; Webster TJ
    Acta Biomater; 2016 Dec; 46():256-265. PubMed ID: 27667017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of hydrophobic surfaces by coupling of Langmuir-Blodgett deposition and a self-assembled monolayer.
    Tsai PS; Yang YM; Lee YL
    Langmuir; 2006 Jun; 22(13):5660-5. PubMed ID: 16768491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of nanoroughness on highly hydrophobic and superhydrophobic coatings.
    Mammen L; Deng X; Untch M; Vijayshankar D; Papadopoulos P; Berger R; Riccardi E; Leroy F; Vollmer D
    Langmuir; 2012 Oct; 28(42):15005-14. PubMed ID: 23030055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacterial adhesion to surface hydrophilic and hydrophobic contact lenses.
    Bruinsma GM; van der Mei HC; Busscher HJ
    Biomaterials; 2001 Dec; 22(24):3217-24. PubMed ID: 11700793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of nano-roughness in antifouling.
    Scardino AJ; Zhang H; Cookson DJ; Lamb RN; de Nys R
    Biofouling; 2009 Nov; 25(8):757-67. PubMed ID: 20183134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of nanoscale particle roughness on the stability of Pickering emulsions.
    San-Miguel A; Behrens SH
    Langmuir; 2012 Aug; 28(33):12038-43. PubMed ID: 22846043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rationalization of the behavior of solid-liquid surface free energy of water in Cassie and Wenzel wetting states on rugged solid surfaces at the nanometer scale.
    Leroy F; Müller-Plathe F
    Langmuir; 2011 Jan; 27(2):637-45. PubMed ID: 21142209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conversion of a metastable superhydrophobic surface to an ultraphobic surface.
    Li XM; He T; Crego-Calama M; Reinhoudt DN
    Langmuir; 2008 Aug; 24(15):8008-12. PubMed ID: 18605708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of nano-scale surface roughness on bacterial adhesion to ultrafine-grained titanium.
    Truong VK; Lapovok R; Estrin YS; Rundell S; Wang JY; Fluke CJ; Crawford RJ; Ivanova EP
    Biomaterials; 2010 May; 31(13):3674-83. PubMed ID: 20163851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adhesion of liquid droplets to rough surfaces.
    Li R; Alizadeh A; Shang W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 1):041608. PubMed ID: 21230288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of particle nanotopology on water transport through hydrophobic soils.
    Truong VK; Owuor EA; Murugaraj P; Crawford RJ; Mainwaring DE
    J Colloid Interface Sci; 2015 Dec; 460():61-70. PubMed ID: 26319321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of molecular-scale roughness on the surface spreading of an aqueous nanodrop.
    Daub CD; Wang J; Kudesia S; Bratko D; Luzar A
    Faraday Discuss; 2010; 146():67-77; discussion 79-101, 395-401. PubMed ID: 21043415
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superhydrophobic ceramic coating: Fabrication by solution precursor plasma spray and investigation of wetting behavior.
    Xu P; Coyle TW; Pershin L; Mostaghimi J
    J Colloid Interface Sci; 2018 Aug; 523():35-44. PubMed ID: 29605739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Air at hydrophobic surfaces and kinetics of three phase contact formation.
    Krasowska M; Zawala J; Malysa K
    Adv Colloid Interface Sci; 2009; 147-148():155-69. PubMed ID: 19036351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement of the surface hydrophobicity of engineered nanoparticles using an atomic force microscope.
    Fu W; Zhang W
    Phys Chem Chem Phys; 2018 Oct; 20(37):24434-24443. PubMed ID: 30221292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.