These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 31896457)
1. Gut microbiota and short chain fatty acid composition as affected by legume type and processing methods as assessed by simulated in vitro digestion assays. Chen Y; Chang SKC; Zhang Y; Hsu CY; Nannapaneni R Food Chem; 2020 May; 312():126040. PubMed ID: 31896457 [TBL] [Abstract][Full Text] [Related]
2. In vitro fecal fermentation characteristics of bamboo insoluble dietary fiber and its impacts on human gut microbiota. Ge Q; Li HQ; Zheng ZY; Yang K; Li P; Xiao ZQ; Xiao GM; Mao JW Food Res Int; 2022 Jun; 156():111173. PubMed ID: 35651096 [TBL] [Abstract][Full Text] [Related]
3. Fibre fermentation and pig faecal microbiota composition are affected by the interaction between sugarcane fibre and (poly)phenols Loo YT; Howell K; Suleria H; Zhang P; Liu S; Ng K Int J Food Sci Nutr; 2023 Mar; 74(2):219-233. PubMed ID: 36915255 [TBL] [Abstract][Full Text] [Related]
4. Effects of digested Cheonggukjang on human microbiota assessed by in vitro fecal fermentation. Singh V; Hwang N; Ko G; Tatsuya U J Microbiol; 2021 Feb; 59(2):217-227. PubMed ID: 33527320 [TBL] [Abstract][Full Text] [Related]
5. In Vitro Fermentation Patterns of Rice Bran Components by Human Gut Microbiota. Pham T; Teoh KT; Savary BJ; Chen MH; McClung A; Lee SO Nutrients; 2017 Nov; 9(11):. PubMed ID: 29137150 [TBL] [Abstract][Full Text] [Related]
6. Comparison of Different Soluble Dietary Fibers during the Bai J; Li Y; Li T; Zhang W; Fan M; Zhang K; Qian H; Zhang H; Qi X; Wang L J Agric Food Chem; 2021 Jul; 69(26):7446-7457. PubMed ID: 33951908 [TBL] [Abstract][Full Text] [Related]
7. Fiber-utilizing capacity varies in Prevotella- versus Bacteroides-dominated gut microbiota. Chen T; Long W; Zhang C; Liu S; Zhao L; Hamaker BR Sci Rep; 2017 Jun; 7(1):2594. PubMed ID: 28572676 [TBL] [Abstract][Full Text] [Related]
8. Cell wall permeability of pinto bean cotyledon cells regulate Huang Y; Dhital S; Liu F; Fu X; Huang Q; Zhang B Food Funct; 2021 Jul; 12(13):6070-6082. PubMed ID: 34042922 [TBL] [Abstract][Full Text] [Related]
9. Whole Tibetan Hull-Less Barley Exhibit Stronger Effect on Promoting Growth of Genus Bifidobacterium than Refined Barley In Vitro. Gong L; Cao W; Gao J; Wang J; Zhang H; Sun B; Yin M J Food Sci; 2018 Apr; 83(4):1116-1124. PubMed ID: 29524219 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of soluble corn fiber on chemical composition and nitrogen-corrected true metabolizable energy and its effects on in vitro fermentation and in vivo responses in dogs. Panasevich MR; Kerr KR; Serao MC; de Godoy MR; Guérin-Deremaux L; Lynch GL; Wils D; Dowd SE; Fahey GC; Swanson KS; Dilger RN J Anim Sci; 2015 May; 93(5):2191-200. PubMed ID: 26020315 [TBL] [Abstract][Full Text] [Related]
11. Effects of pectin on fermentation characteristics, carbohydrate utilization, and microbial community composition in the gastrointestinal tract of weaning pigs. Tian L; Bruggeman G; van den Berg M; Borewicz K; Scheurink AJ; Bruininx E; de Vos P; Smidt H; Schols HA; Gruppen H Mol Nutr Food Res; 2017 Jan; 61(1):. PubMed ID: 27198846 [TBL] [Abstract][Full Text] [Related]
12. The effect of age and carbohydrate and protein sources on digestibility, fecal microbiota, fermentation products, fecal IgA, and immunological blood parameters in dogs. Maria APJ; Ayane L; Putarov TC; Loureiro BA; Neto BP; Casagrande MF; Gomes MOS; Glória MBA; Carciofi AC J Anim Sci; 2017 Jun; 95(6):2452-2466. PubMed ID: 28727033 [TBL] [Abstract][Full Text] [Related]
13. Organic matter disappearance and production of short- and branched-chain fatty acids from selected fiber sources used in pet foods by a canine in vitro fermentation model1. Donadelli RA; Titgemeyer EC; Aldrich CG J Anim Sci; 2019 Nov; 97(11):4532-4539. PubMed ID: 31560750 [TBL] [Abstract][Full Text] [Related]
14. Effects of soaking, cooking and fermentation on composition, in-vitro starch digestibility and nutritive value of common beans. Barampama Z; Simard RE Plant Foods Hum Nutr; 1995 Dec; 48(4):349-65. PubMed ID: 8882373 [TBL] [Abstract][Full Text] [Related]
15. Flaxseed meal and oat hulls supplementation: impact on predicted production and absorption of volatile fatty acids and energy from hindgut fermentation in growing pigs. Ndou SP; Kiarie E; Nyachoti CM J Anim Sci; 2019 Jan; 97(1):302-314. PubMed ID: 30321361 [TBL] [Abstract][Full Text] [Related]
16. Sugarcane polyphenol and fiber to affect production of short-chain fatty acids and microbiota composition using in vitro digestion and pig faecal fermentation model. Loo YT; Howell K; Suleria H; Zhang P; Gu C; Ng K Food Chem; 2022 Aug; 385():132665. PubMed ID: 35299023 [TBL] [Abstract][Full Text] [Related]
17. In vitro saliva-gastrointestinal digestion and fecal fermentation of Oudemansiella radicata polysaccharides reveal its digestion profile and effect on the modulation of the gut microbiota. Liu Y; Li Y; Ke Y; Li C; Zhang Z; Wu Y; Hu B; Liu A; Luo Q; Wu W Carbohydr Polym; 2021 Jan; 251():117041. PubMed ID: 33142599 [TBL] [Abstract][Full Text] [Related]
18. Simulated Digestion and Fermentation in Vitro by Human Gut Microbiota of Polysaccharides from Bee Collected Pollen of Chinese Wolfberry. Zhou W; Yan Y; Mi J; Zhang H; Lu L; Luo Q; Li X; Zeng X; Cao Y J Agric Food Chem; 2018 Jan; 66(4):898-907. PubMed ID: 29313353 [TBL] [Abstract][Full Text] [Related]
19. The impact of long-term dietary pattern of fecal donor on in vitro fecal fermentation properties of inulin. Yang J; Rose DJ Food Funct; 2016 Apr; 7(4):1805-13. PubMed ID: 26583778 [TBL] [Abstract][Full Text] [Related]
20. Physical effects of dietary fibre on simulated luminal flow, studied by in vitro dynamic gastrointestinal digestion and fermentation. Tamargo A; Cueva C; Alvarez MD; Herranz B; Moreno-Arribas MV; Laguna L Food Funct; 2019 Jun; 10(6):3452-3465. PubMed ID: 31139792 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]