These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
359 related articles for article (PubMed ID: 31896459)
1. A spectroscopic approach to detect and quantify phosmet residues in Oolong tea by surface-enhanced Raman scattering and silver nanoparticle substrate. Chen X; Wang D; Li J; Xu T; Lai K; Ding Q; Lin H; Sun L; Lin M Food Chem; 2020 May; 312():126016. PubMed ID: 31896459 [TBL] [Abstract][Full Text] [Related]
2. Detection and quantification of carbendazim in Oolong tea by surface-enhanced Raman spectroscopy and gold nanoparticle substrates. Chen X; Lin M; Sun L; Xu T; Lai K; Huang M; Lin H Food Chem; 2019 Sep; 293():271-277. PubMed ID: 31151611 [TBL] [Abstract][Full Text] [Related]
3. Cellulose nanofibers coated with silver nanoparticles as a flexible nanocomposite for measurement of flusilazole residues in Oolong tea by surface-enhanced Raman spectroscopy. Chen X; Lin H; Xu T; Lai K; Han X; Lin M Food Chem; 2020 Jun; 315():126276. PubMed ID: 32014669 [TBL] [Abstract][Full Text] [Related]
4. Signal optimized rough silver nanoparticle for rapid SERS sensing of pesticide residues in tea. Hassan MM; Zareef M; Jiao T; Liu S; Xu Y; Viswadevarayalu A; Li H; Chen Q Food Chem; 2021 Feb; 338():127796. PubMed ID: 32805691 [TBL] [Abstract][Full Text] [Related]
5. Facile synthesis of gold nanostars for the duplex detection of pesticide residues in grapes using SERS. Zhai K; Sun L; Nguyen THD; Lin M J Food Sci; 2024 Apr; 89(4):2512-2521. PubMed ID: 38380711 [TBL] [Abstract][Full Text] [Related]
6. Plasmonic 3D Semiconductor-Metal Nanopore Arrays for Reliable Surface-Enhanced Raman Scattering Detection and In-Site Catalytic Reaction Monitoring. Zhang M; Chen T; Liu Y; Zhang J; Sun H; Yang J; Zhu J; Liu J; Wu Y ACS Sens; 2018 Nov; 3(11):2446-2454. PubMed ID: 30335972 [TBL] [Abstract][Full Text] [Related]
7. Silver microspheres aggregation-induced Raman enhanced scattering used for rapid detection of carbendazim in Chinese tea. He J; Li H; Zhang L; Zhi X; Li X; Wang X; Feng Z; Shen G; Ding X Food Chem; 2021 Mar; 339():128085. PubMed ID: 33152876 [TBL] [Abstract][Full Text] [Related]
8. Development of cellulose Nanofiber-based substrates for rapid detection of ferbam in kale by Surface-enhanced Raman spectroscopy. Sun L; Yu Z; Alsammarraie FK; Lin MH; Kong F; Huang M; Lin M Food Chem; 2021 Jun; 347():129023. PubMed ID: 33484959 [TBL] [Abstract][Full Text] [Related]
9. Construction of pure worm-like AuAg nanochains for ultrasensitive SERS detection of pesticide residues on apple surfaces. Jiao A; Dong X; Zhang H; Xu L; Tian Y; Liu X; Chen M Spectrochim Acta A Mol Biomol Spectrosc; 2019 Feb; 209():241-247. PubMed ID: 30414572 [TBL] [Abstract][Full Text] [Related]
10. Determination of the Limit of Detection of Multiple Pesticides Utilizing Gold Nanoparticles and Surface-Enhanced Raman Spectroscopy. Dowgiallo AM; Guenther DA J Agric Food Chem; 2019 Nov; 67(46):12642-12651. PubMed ID: 31188587 [TBL] [Abstract][Full Text] [Related]
11. Surface-enhanced Raman spectroscopic analysis of phorate and fenthion pesticide in apple skin using silver nanoparticles. Li X; Zhang S; Yu Z; Yang T Appl Spectrosc; 2014; 68(4):483-7. PubMed ID: 24694705 [TBL] [Abstract][Full Text] [Related]
12. Fast sensing of imidacloprid residue in tea using surface-enhanced Raman scattering by comparative multivariate calibration. Chen Q; Hassan MM; Xu J; Zareef M; Li H; Xu Y; Wang P; Agyekum AA; Kutsanedzie FYH; Viswadevarayalu A Spectrochim Acta A Mol Biomol Spectrosc; 2019 Mar; 211():86-93. PubMed ID: 30521997 [TBL] [Abstract][Full Text] [Related]
13. Detection of systemic pesticide residues in tea products at trace level based on SERS and verified by GC-MS. Zhang D; Liang P; Ye J; Xia J; Zhou Y; Huang J; Ni D; Tang L; Jin S; Yu Z Anal Bioanal Chem; 2019 Nov; 411(27):7187-7196. PubMed ID: 31620825 [TBL] [Abstract][Full Text] [Related]
14. Surface-enhanced Raman scattering method for the identification of methicillin-resistant Staphylococcus aureus using positively charged silver nanoparticles. Chen X; Tang M; Liu Y; Huang J; Liu Z; Tian H; Zheng Y; de la Chapelle ML; Zhang Y; Fu W Mikrochim Acta; 2019 Jan; 186(2):102. PubMed ID: 30637528 [TBL] [Abstract][Full Text] [Related]
15. Fabrication of silver-coated gold nanoparticles to simultaneously detect multi-class insecticide residues in peach with SERS technique. Yaseen T; Pu H; Sun DW Talanta; 2019 May; 196():537-545. PubMed ID: 30683402 [TBL] [Abstract][Full Text] [Related]
16. Understanding the impact of a non-ionic surfactant alkylphenol ethoxylate on surface-enhanced Raman spectroscopic analysis of pesticides on apple surfaces. Du X; Gao Z; Yang T; Qu Y; He L Spectrochim Acta A Mol Biomol Spectrosc; 2023 Nov; 301():122954. PubMed ID: 37270975 [TBL] [Abstract][Full Text] [Related]
17. Screening pesticide residues on fruit peels using portable Raman spectrometer combined with adhesive tape sampling. Gong X; Tang M; Gong Z; Qiu Z; Wang D; Fan M Food Chem; 2019 Oct; 295():254-258. PubMed ID: 31174756 [TBL] [Abstract][Full Text] [Related]
18. Determination of Dicofol in Tea Using Surface-Enhanced Raman Spectroscopy Coupled Chemometrics. Ke Q; Yin L; Jayan H; El-Seedi HR; Gómez PL; Alzamora SM; Zou X; Guo Z Molecules; 2023 Jul; 28(14):. PubMed ID: 37513164 [TBL] [Abstract][Full Text] [Related]
19. In situ and rapid determination of acetamiprid residue on cabbage leaf using surface-enhanced Raman scattering. Pan TT; Guo W; Lu P; Hu D J Sci Food Agric; 2021 Jul; 101(9):3595-3604. PubMed ID: 33275280 [TBL] [Abstract][Full Text] [Related]
20. Controllable assembly of high sticky and flexibility surface-enhanced Raman scattering substrate for on-site target pesticide residues detection. Bai F; Dong J; Wang T; Qu J; Zhang Z Food Chem; 2023 Mar; 405(Pt A):134794. PubMed ID: 36368104 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]