BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 31896460)

  • 1. Effects of hydroxycinnamic acids on the reduction of furan and α-dicarbonyl compounds.
    Lee SM; Zheng LW; Jung Y; Hwang GS; Kim YS
    Food Chem; 2020 May; 312():126085. PubMed ID: 31896460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of glycoxidation of bovine serum albumin by methylglyoxal and glyoxal and its prevention by various compounds.
    Sadowska-Bartosz I; Galiniak S; Bartosz G
    Molecules; 2014 Apr; 19(4):4880-96. PubMed ID: 24747646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of α-dicarbonyl compounds in coffee (Coffea arabica) prepared under various roasting and brewing methods.
    Kwon J; Ahn H; Lee KG
    Food Chem; 2021 May; 343():128525. PubMed ID: 33168262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of Quercetin and Its Methylglyoxal Adducts on the Formation of α-Dicarbonyl Compounds in a Lysine/Glucose Model System.
    Liu G; Xia Q; Lu Y; Zheng T; Sang S; Lv L
    J Agric Food Chem; 2017 Mar; 65(10):2233-2239. PubMed ID: 28233503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Higher habitual intake of dietary dicarbonyls is associated with higher corresponding plasma dicarbonyl concentrations and skin autofluorescence: the Maastricht Study.
    Maasen K; Eussen SJPM; Scheijen JLJM; van der Kallen CJH; Dagnelie PC; Opperhuizen A; Stehouwer CDA; van Greevenbroek MMJ; Schalkwijk CG
    Am J Clin Nutr; 2022 Jan; 115(1):34-44. PubMed ID: 34625788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quercetin inhibits advanced glycation end product formation by trapping methylglyoxal and glyoxal.
    Li X; Zheng T; Sang S; Lv L
    J Agric Food Chem; 2014 Dec; 62(50):12152-8. PubMed ID: 25412188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Free α-dicarbonyl compounds in coffee, barley coffee and soy sauce and effects of in vitro digestion.
    Papetti A; Mascherpa D; Gazzani G
    Food Chem; 2014 Dec; 164():259-65. PubMed ID: 24996332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tea polyphenol (-)-epigallocatechin-3-gallate: a new trapping agent of reactive dicarbonyl species.
    Sang S; Shao X; Bai N; Lo CY; Yang CS; Ho CT
    Chem Res Toxicol; 2007 Dec; 20(12):1862-70. PubMed ID: 18001060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Melanoidins from Coffee, Cocoa, and Bread Are Able to Scavenge α-Dicarbonyl Compounds under Simulated Physiological Conditions.
    Zhang H; Zhang H; Troise AD; Fogliano V
    J Agric Food Chem; 2019 Oct; 67(39):10921-10929. PubMed ID: 31496242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antibacterial activity of 1,2-dicarbonyl compounds and the influence of the in vitro assay system.
    Brighina S; Restuccia C; Arena E; Palmeri R; Fallico B
    Food Chem; 2020 May; 311():125905. PubMed ID: 31796226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antioxidant and pro-oxidant actions of resveratrol on human serum albumin in the presence of toxic diabetes metabolites: Glyoxal and methyl-glyoxal.
    Arcanjo NMO; Luna C; Madruga MS; Estévez M
    Biochim Biophys Acta Gen Subj; 2018 Sep; 1862(9):1938-1947. PubMed ID: 29902553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Artichoke (Cynara cardunculus L. var. scolymus) waste as a natural source of carbonyl trapping and antiglycative agents.
    Maietta M; Colombo R; Lavecchia R; Sorrenti M; Zuorro A; Papetti A
    Food Res Int; 2017 Oct; 100(Pt 1):780-790. PubMed ID: 28873750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flavour chemistry of methylglyoxal and glyoxal.
    Wang Y; Ho CT
    Chem Soc Rev; 2012 Jun; 41(11):4140-9. PubMed ID: 22508009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of α-Dicarbonyls from Dairy Related Carbohydrates with and without Nα-Acetyl-l-Lysine during Incubation at 40 and 50 °C.
    Zhang W; Poojary MM; Olsen K; Ray CA; Lund MN
    J Agric Food Chem; 2019 Jun; 67(22):6350-6358. PubMed ID: 31083944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and characterization of reaction products of 5-hydroxytryptamine with methylglyoxal and glyoxal by liquid chromatography/tandem mass spectrometry.
    Sai Sachin L; Nagarjuna Chary R; Pavankumar P; Prabhakar S
    Rapid Commun Mass Spectrom; 2018 Sep; 32(17):1529-1539. PubMed ID: 29874403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protective effects of ferulic acid and related polyphenols against glyoxal- or methylglyoxal-induced cytotoxicity and oxidative stress in isolated rat hepatocytes.
    Maruf AA; Lip H; Wong H; O'Brien PJ
    Chem Biol Interact; 2015 Jun; 234():96-104. PubMed ID: 25446858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of glyoxal and methylglyoxal in serum by UHPLC coupled with fluorescence detection.
    Dhananjayan K; Irrgang F; Raju R; Harman DG; Moran C; Srikanth V; Münch G
    Anal Biochem; 2019 May; 573():51-66. PubMed ID: 30796906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binding of caffeine with caffeic acid and chlorogenic acid using fluorescence quenching, UV/vis and FTIR spectroscopic techniques.
    Belay A; Kim HK; Hwang YH
    Luminescence; 2016 Mar; 31(2):565-572. PubMed ID: 26934864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of allysine in β-lactoglobulin and myofibrillar proteins by glyoxal and methylglyoxal: Impact on water-holding capacity and in vitro digestibility.
    Luna C; Estévez M
    Food Chem; 2019 Jan; 271():87-93. PubMed ID: 30236745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of dicarbonyl trapping agents, antioxidants, and reducing agents on the formation of furan and other volatile components in canned-coffee model systems.
    Zheng LW; Chung H; Kim YS
    Food Res Int; 2015 Sep; 75():328-336. PubMed ID: 28454963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.